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Abstract
A new Continuous interpolant method based on polynomial approximation is here proposed for
solving wave equation subject to some initial and boundary conditions. The method results from
discretization of the wave equation which leads to the production of a system of algebraic
equations. By solving the system of algebraic equations by employing the continuous interpolant
scheme we obtain the problem approximate solutions.
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1. Introduction

There is a growing interest in the recent

literatures concerning continuous numerical

methods for solving ODEs. In science and

engineering, this interest is extended to the

development of continuous numerical

techniques for solving wave equation

subject to initial and boundary conditions.

Their advantages over discrete ones are now

well known, including their connection to

large families (Odekunle, 2008). We

presented an extension of this continuous

method for solving ODEs to solve PDEs in

two dimensions as a conjecture. Hitherto,

efforts have been on top gear to derive

continuous numerical interpolant for solving

wave equation. When this is achieved then

a generalized scheme that can solve all the

branches of PDEs- parabolic, hyperbolic and

elliptic equations is possible. In this paper

therefore, we develop a new continuous

numerical interpolant which is based on
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interpolation and collocation at some points

along the coordinates (Adam & David 2002).

2. Solution Method

In 2002, Awoyemi postulated that in setting

up the solution method we select an integer

N such that 0N . Then subdivide the

interval Xx 0 into N equal

subintervals with mesh points along the

space coordinate given by

Niihxi 










11, , where

.0,  XNh Similarly, reverse the roles

of x and t select another integer M such

that .0M Also, subdivide the interval

Tt 0 into M equal subintervals with

mesh points along time axis given by

jkt j  , Mj 







11 where

0,  TMk and kh, are the mesh sizes

along space and time axes

respectively(Odekunle,2008; Biazar&

Ebrahimi,2005). Here, we seek for the

approximate solutions  txU , to

 txU p ,1 in the manner of Yildiz (2001) and

Zheyin (2012) of the form

          kjjhii

p

r
rrp tttxxxtxatxUtxU 




   ,,,,,,,

1

0
1 

(2.0)

Over 0,0  kh mesh sizes, such that

Bao et al., (2003) suggested that in doing

this we let  be the sum of interpolation

points alongspace and time coordinates.

Therefore, bg  , where g is the number

of interpolation points along the space axis

and b the number of interpolation points

along time coordinate. The basis function

  1,...,1,0,,  prtxr is the Laguerre’s

polynomials which is known, ra are the

constants to be determined. There will be

flexibility in the choice of the basis function

as may be desired for specific application.

For this work, we consider the Laguerre’s

polynomial   rr
r txtx , . The interpolation

values jhiji UU ,1, ,...,  are assumed to have

been determined from previous steps, while

the method seeks to obtain jhiU , (Odekunle,

2008; Awoyemi, 2002; Benner and Mena,

2004; Dehghan,2003). Applying the above

interpolation conditions on eqn. (2.0) we

obtain;

       kjhikjhippkjhikjhi txUtxatxatxa   ,,...,, 121100 
(2.1)
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We let 














 















1211 gh

arbitrarily and 0k , then by Crammer’s

rule, eqn. (2.1) becomes

  




















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



T
p

T
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

(2.2)

and
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Where


 1,12








 
 ivgiz and

1W exists,and again 0,  (Odekunle,

2008; Bensoussan, et al., 2007). Hence, by

equation (2.2) we obtain

1,  WFa 

(2.3)

The vector  Tpaaa 10 ,...,  is now

determined in terms of known parameters in

F . If 1r is the  thr 1 row of  then

Fa rr 1

(2.4)

Eqn. (2.4) determines the values of ra . Let

us take first and second derivatives of eqn.

(2.0) with respect to x ,

   







 

1

0
,,

p

r
rr txatxU 

   







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1

0
,,

p

r
rr txatxU 

(2.5)

Substituting eqn. (2.4) into eqn. (2.5), we

obtain

   



 



 





 

1

0
1 ,,

p

r
rr txFtxU 

(2.6)

Again, by Odekunle (2006) we reverse the

roles of x and t in eqn. (2.1) and we

arbitrarily set 













 













110 bk and

0,0  k , then again by Cramer‘s rule

eqn. (2.1) becomes.
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and
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Where ,1,1 





 







 bjj

and 1Y exists and 0 (Eyaya, 2010;

Penzl, 2000; Pierre, 2008). Hence from

equation (2.7) we obtain

1,  YLELa

(2.8)

The vector  Tpaaa 10 ,...,  is now

determined in terms of known parameters

in .EL If 1rL is the  thr 1 row of L then

ELa rr 1

(2.9)

Also, eqn. (2.9) determines the values of ra .

Taking the first and second derivatives of

eqn. (2.0) with respect to t , we obtain

   







 

1

0
,,

p

r
rr txatxU 

   







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1

0
,,

p

r
rr txatxU  (2.10)

Substituting eqn. (2.9) in eqn. (2.10) we

have

   



 



 





 

1

0
1 ,,

p

r
rr txELtxU 

(2.11)

But by eqn. (1.0) it is obvious that eqn. (2.11)

is equal to eqn. (2.6), therefore,

 



 



 





 1

0
1 ,

p

r
rr txEL  -

 



 



 





 1

0
1 ,

p

r
rr txF  =0

(2.12)

Collocating eqn. (2.12) at ixx  and jtt 

we obtain a new continuous numerical

interpolant that solves eqn. (1.0) explicitly.

2.1 Numerical Examples

In this section we give some numerical

examples to compute approximate solutions

for equation (1.0) by the method discussed

in this paper. This is in order to test the

numerical accuracy of the new method. To

achieve this, we follow Richard et al., (2001)

and Saumaya et al., (2012),we truncate the

Laguerre’s polynomial after second order
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and use it as the basis function for the

computation. The resultant interpolant is

used to solve the following test problems.

Example 3.0

Use the scheme to approximate the solution

to the wave equation

tx
x
U

t
U







 010,02

2

2

2

,

    0,0,1,0  ttUtU

    10,00,,10,sin0, 



 xx
x
UxxxU 

Table I: Result of action of Eqn. (2.12) on example 3.0

x Exact solution
),( txU

Schmidt method
 txU ,

New Method
),( txU

Errors

New Method Schmidt method

0 0 0 0 0 0

0.1 0.305212482 0.305992120 0.305235901 2.3419 X E-5 7.7963840 X E- 4

0.2 0.580548640 0.582031600 0.580593187 4.4547 X E-5 1.4829604 X E -3

0.3 0.799056652 0. 801097772 0.799117966 6.1314 X E-5 2.0411200 X E- 3

0.4 0.939347432 0.941746912 0.939419511 7.2079 X E-5 2.3994802 X E -3

0.5 0.987688340 0.990211303 0.987764129 7.5789 X E-5 2.5229632 X E -3

0.6 0.939347432 0.941746912 0.939419511 7.2079 X E-5 2.3994802 X E -3

0.7 0.799056652 0. 801097772 0.799117966 6.1314 X E-5 2.0411200 X E- 3

0.8 0.580548640 0.582031600 0.580593187 4.4547 X E-5 2.0411200 X E- 3

0.9 0.305212482 0.305992120 0.305235901 2.3419 X E-5 7.7963840 X E- 4

1 0 0 0 0 0
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Example 3.1

Use the scheme to approximate the solution to the wave equation

tx
x
U

t
U







 0,1004 2

2

2

2

,     0,0,1,0  ttUtU

    10,00,,10,sin0, 



 xx
x
UxxxU 

Table II: Result of action of Eqn. (2.12) on example 3.1

x Exact
Solution
 txU ,

Schmidt method
 txU ,

New method
 txU ,

Errors

New Method Schmidt Method

0 0 0 0 0 0

0.1 0.305212482 0.304983829 0.305235901 2.3419 X E-5 2.2865 X E -4

0.2 0.58054864 0.580113718 0.580593187 4.4547 X E-5 4.3492 X E -4

0.3 0.799056652 0.798458034 0.799117966 6.1314X E-5 5.9862 X E -4

0.4 0.939347432 0.9386437114 0.939419511 7.2079 X E-5 7.0372 X E– 4

0.5 0.987688340 0.986948407 0.987764129 7.5789 X E-5 7.3993 X E– 4

0.6 0.939347432 0.305992120 0.939419511 7.2079 X E-5 7.0372 X E– 4

0.7 0.799056652 0.798458034 0.799117966 6.1314 X E-5 5.9862 X E -4

0.8 0.58054864 0.580113718 0.580593187 4.4547 X E-5 4.3492 X E -4

0.9 0.305212482 0.304983829 0.305235901 2.3419 X E-5 2.2865 X E -4

1 0 0 0 0 0

3. Discussion of Results

Results of action of eqn. (2.12) which is our

new continuous interpolant scheme have

shown that the new off - grid method is

more accurate than the known explicit

Schmidt method when used to solve wave

equations subject to some initial and

boundary conditions. These numerical

results have confirmed the validity of this

new off -grid continuous interpolant method.

Again, this continuous method has also
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provided a more stable scheme than the

known explicit Schmidt method as will be

seen in our subsequent research results.

3.1 Recommendations

Based on our findings and restrictions

experienced during the derivation of these

schemes, we intend to base our

recommendations on some salient and could

easily be overlooked areas. Our suggestions

follow our desire to investigate higher

fractional mesh points that could have easily

given us more accurate results. Following

these arguments, we wish to present the

following points as areas that need some

investigations and further researching: To

make generalization of the new method,

proper investigation into the non-variability

of the number of collocation points have to

be investigated. When this investigation is

successful, then we can easily generalize our

scheme to solveeven parabolic and elliptic

equations as while.

Also, we wish to challenge our teeming

researchers to come up with a new scheme

with higher fractional mesh points. This we

believe will give us a more accurate result.

We are again, suggesting that researchers

should try to vary the number of collocation

points, while keeping the interpolation point

fixed.

Conclusion

In this work, an off - grid continuous
interpolant is developed for solving wave
equationssubject to some initial and
boundary conditions. The Laguerre’s
polynomial is employed as basis function in
the derivation of our new scheme.
Interpolation and collocation at various
points were also carry - out. Complex
functional evaluations were avoided through
- out the processes of derivation of this
method. Besides, the new method had
avoided the complex expansion of
Laguerre’s polynomial as is seen in the
derivations of most explicit methods. These
had helped in reducing the number of
procedures during program writing. Also,
the new method has improved the accuracy
of the results obtained through the avoidance
of error that might be caused by truncation
in the approximation of the Laguerre’s
polynomial.

When compared with the Schmidt scheme

the results showed that the performances of

the new scheme were far better than the

Schmidt scheme as is shown in tables I & II

above.
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