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Abstract 

This study introduces a two-parameter model called a new Weibull inverted exponential 

(AWIE) distribution for modeling lifetime datasets. The proposed model uses the new 

Weibull-X characterizations. The density of the proposed model can be symmetrical, left 

skewed, reverse J-shaped, unimodal and increasing, and bathtub shaped failure rate. Some 

mathematical properties of the proposed distribution are investigated. The two parameters of 

the proposed model are obtained by maximum likelihood. The regression and Bayesian 

models of the proposed model are obtained in a class form. Two real-life data sets are used to 

illustrate the applicability of the proposed model. The results of the test statistics show that the 

proposed new model gives a better fit compared to some related distributions in literature. 
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1. Introduction 

The quality of any statistical decision made 

depends on the probability distribution used 

in the estimation. Hence, considerable 

statistical research has been made in 

distribution theory to develop a new class of 

distribution that is more flexible and 

relevant. 

The inverted exponential distribution is a 

continuous model with inverted bathtub 

hazard function introduced in Keller et al. 

(1982). This inverted exponential 

distribution became very useful in modeling 

Poisson processes between events in which 

the exponential distribution could not 

handle. This also was as a result of its 

constant failure rate. Though, the 

exponential distribution is used to model 

Poisson processes with memoryless random 

processes. However, because of its constant 

failure rate and since life-time scenarios are 

not constant; the inverted exponential model 

is introduced to address this inefficiency. 

In recent years, the inverted exponential 

model has been used in medicine, 

engineering, biology, business, electronic 

systems and insurance. Unal et al. (2018) 

proposed the alpha power inverted 

exponential with application to survival time 

of patients with neck and head cancer 

diseases. Oguntunde et al. (2014a) proposed 

the exponentiated generalized inverted 

exponential distribution. Oguntunde et al. 

(2014b) proposed the Kumaraswamy inverse 

exponential distribution. Abouammoh and 

Alshingiti (2009) proposed the generalized 

inverted exponential distribution. Efe-Eye et 

al. (2020) proposed the Weibull alpha power 

inverted exponential distribution with 

application to glass fibers and carbon data. 

Eghwerido et al. (2019) proposed the 

extended new generalized exponential 

distribution. Eghwerido et al. (2020) 
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proposed the Gompertz alpha power inverted 

exponential distribution. Zelibe et al. (2019) 

proposed the Kumaraswamy alpha power 

inverted exponential distribution. Singh and 

Goel (2015) proposed beta inverted 

exponential distribution. Chandrakant et al. 

(2018) proposed the Weibull inverse 

exponential Distribution. Oguntunde et al. 

(2017) proposed a useful extension of the 

inverse exponential distribution. Alrajhi 

(2019) proposed the odd Frechet inverse 

exponential distribution.Oguntunde 

Adejumo (2015) proposed transmuted 

inverse exponential distribution. Singh et al. 

(2013) estimated the parameters of 

generalized inverted exponential. Oguntunde 

et al. (2018) proposed the Gompertz inverse 

exponential distribution. Truncated inverted 

generalized exponential was proposed in 

Genc (2015), and exponentiated shifted 

exponential was proposed in Agu (2020). 

 

The motivation of this article is to introduce 

a class of inverted exponential distribution 

with increasing, reversed J-shape and 

bathtub shaped hazard rate model for real-

life data. 

 

This article aims at a two-parameter model 

called AWIE distribution for modeling 

Poisson processes between events. The 

mathematical properties of the AWIE model 

together with its Bayesian, unit model and 

regression model were also developed. The 

major characteristic of the proposed model is 

that one shape parameter is added to make 

the new proposed model more flexible. 

 

Let 0w be the scale parameter, then the 

probability density function (pdf) and 

cumulative distribution function (cdf) of the 

inverted exponential distribution for a 

random variable U is expressed as 

  0,exp
2









 u

u

w

u

w
uf ,  

     (1) 

and  

   0,exp 







 u

u

w
uF .  

     

 (2) 

 

Suppose  uf  and  uF  are the baseline pdf 

and cdf of a particular distribution. Now, 

consider a one parameter Weibull 

cdf    wuwF  exp1 , for 0,0  wu . 

Then, the cdf of the new Weibull-X defined 

in Zubair et al. (2018) is expressed as 
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The corresponding density is defined as 
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2. The AWIE Distribution 

Let U  be a random variable. Thus, 

motivated by the new Weibull-X method, 

the AWIE distribution is introduced with cdf 

given as 
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The density that corresponds is defined 

as
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for  ,0,0 uw and  is additional 

parameter for controlling the kurtosis and 

skewness.  

 

Figure 1 shows the plot of the AWIE density 

model for different parameter values cases. 

The plot shows that the density can be 

decreasing, increasing, unimodal and 

skewed. 
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Figure 1. The AWIE density for different 

parameter values cases 

 

However, omitting the dependence of the 

parameter w  and , we can simply write 

   ,; wugug   and    ,;wuGuG  . The 

reliability function that corresponds to 

Equation (6) is given as 
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The failure rate is expressed as 
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Figure 2 shows the plot of the AWIE failure 

rate model for different parameter values 

cases. The plot shows that the failure rate 

can be bathtub, increasing and J-shaped. 
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Figure 2. The AWIE hazard rate function for 

different parameter values cases 

 

The AWIE cumulative hazard rate (H), 

reversed hazard rate (r) and odds (O) 

functions are expressed as 
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3. Linear Representation 

This section discusses the linear representation of the 

AWIE model. This mixture mathematical 

representation derived is used to obtain some 

simplified properties of the proposed model. Thus, it 

helps to express the new model in terms of the 

inverted exponential distribution. 

  

 

 

    

    

   

.

50248515015
5760

1

,65
48

1

,53
24

1

,
2

1

1log  valuerealany For  2.1. Lemma

23

3

2

2

1

0

1

0

spolynomialStirlingtheare

D

D

D

Dwhere

ADA

A

m

m

m




























 



 

  





0 !

exp

,  valuerealany For  2.2. Lemma

p

pp

p

ua
au

a

. 

 

 
 
 












0

,
!

A-1

c,  valuerealany For  2.3. Lemma

h

hc
A

ch

hc  

  andcAprovided 0,1

.functiongammatheis  

 

 

However, by Lemma 3. 1, 3.2 and 3.3, the 

cdf of the AWIE model can be expressed as 

 

   
 
 

  Bph
u

w

p

hp

ph
uG

ph

p














 











exp

!!

1
11

0,
, 

     (12) 

where 

    















 





1exp1
0

m
u

w
pDB

m

m
 . 

Also, the pdf is given as 
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4. Statistical Properties 

In this section, the statistical properties of 

the proposed AWIE distribution are derived 

and investigated. This include the moments, 

moment generating function, probability 

generating function and order statistics. 

 

 

4.1 Moments 

Lemma 3.1. For ,Zm where Z is a 

positive integer, then 
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Thus, the thr moment of U for the AWIE 

model is 
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expressed
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4.2 The AWIE Probability Weighted 

Moments (PWM) 
The PWM of the AWIE distribution 

of the random variable U is 

expressed as
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Lemma 3.1. for 
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Thus, the last quantity in Equation 

(15) is expressed 

as
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4.3 The AWIE Generating Function 

The probability generating function for the 

AWIE distribution and the moment 

generating functions are obtained in this 

section. 
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The probability generating function of the 

AWIE random variable U is obtained as 
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After integrating and simplifying, we 

have 
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The moment generating function is defined 
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4.4 The AWIE Order Statistics 

 The thk order statistics of the random 

variable nuuu ,1 that are AWIE 

distributed is given as 
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4.5 Parameter Estimation 
In this section, the maximum likelihood 

method is employed to obtain the parameters 

of the AWIE distribution. Let 

 nuuuu ,, 21  be the AWIE random 

sample with unknown parameter 

vector  TwK , . Then, the log-likelihood 

function   for Equation (6) where, 
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Thus, the partial derivatives of Equation (20) 

with respect to the unknown parameters and 

equating to zero are expressed as  
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The parameter estimates of the unknown can 

be obtained numerically by Newton-

Raphson algorithm in MATHEMATICAL, 

R, MATLAB and MAPLE. 

 

 

4.6 The quantile function 

Lemma 4.1. For 
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Thus, for U an AWIE random variable and 

by Lemma 2.2 and Lemma 4.1. Then, the 

quantile function for  1,0v can be defined 

in power series as 
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when 
2

1
v in Equation(23), we obtained the 

median 2Q as  
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However, the first quantile 1Q  and third 

quantile 3Q can be obtained respectively as  
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and  
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4.7 The Simulation Study with the AWIE 

Distribution 

A Monte Carlo simulation study is 

performed to examine the performance, 

applicability and flexibility of the AWIE 

model. The simulation is performed as 

follows 
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 Random data are generated using 

the AWIE quantile function 

defined as  .
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 The parameter values are set as 

follow 5.0 and 6.0w . 

 The random sample sizes are 

taken as follows: 10, 50,100 and 

200. 

 Each of the random sample size is 

replicated 50000 times. 

 

The simulation investigated the mean 

estimates (AEs), biases, variances and mean 

squared errors (MSEs) of the AWIE model 

maximum likelihood estimates. 

 

The maximum likelihood estimates (MLE) is 

estimated as  

 
250000

1

ˆ
50000

1ˆ 



i

iM MMSEM . The bias is 

obtained as  



50000

1

ˆ
50000

1ˆ

i

iM MMiasB . 

 

Table 1 shows the Monte Carlo simulation 

results. The Table 1 shows that the MSE, 

variance and biases of the parameter 

estimates decreases as the sample sizes 

increases.

 

Table 1.Monte Carlo simulation results for mean estimates, estimated biases, variance and mean 

squared errors 
n Parameter AE Variance Bias MSE 

10 5.0  0.0164  0.0019  -0.4836  0.1058  

 6.0w  2.1956 0.3049 1.5956 1.1423 

50 5.0  0.0040  0.0001  -0.4960  0.0461  

 6.0w  1.7609 0.2402 1.0619 0.0891 

100 5.0  0.0037 0.0001  -0.4970  0.0060  

 6.0w  1.5006 0.1205 0.9356 0.0120 

200 5.0  0.0015  0.0000  -0.5955  0.0026  

 6.0w  1.0070 0.1085 0.0930 0.0037 

 

 

 

5. Applications 

In this section, the application to real-life 

data is investigated to enhance the 

applicability of the proposed model. The 

goodness-of-fit statistics of the AWIE 

distribution is compared to the 

Kumaraswamy alpha power exponential 

(KAPIE) distribution, Exponential (E), alpha 

power shifted exponential (APSE) 

distribution, Inverted exponential (IE) 

distribution Keller et al. (1982), Alpha 

power inverted exponential (APIE) 

distribution  [2], generalized inverted 

generalized exponential (GIGE) distribution 

(Oguntunde and Adejumo 2015), Weibull 

Frechet distribution (Afify et al. 2016) and 

Kumaraswamy Inverted Exponential (KIE). 

The goodness-of-fit are based on test 

statistics of Alkaike Information Criteria 

(AIC), Hanniquin Information Criteria 

(HQIC), Bayesian Information Criteria 
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(BIC), Consistent Akaike Information 

Criteria (CAIC), Cramer-von Mises (W),  

Anderson Darling (A), and the p values (p-

val).   

The first data consist of 1.5 cm strengths of 

glass fibres data at the UK National Physical 

Laboratory as used in (Smith and Naylor  

1987, Bourguignon et al. (2014), Haq 2016, 

Merovci et al. (2016), Rastogi and 

Oguntunde(2018), Obubu et al. (2019), 

Eghwerido et al. (2019), Zelibe et al. (2019), 

Efe-Eyefia et al. (2020), Eghwerido et al. 

(2020a), Eghwerido et al. (2020), 

Eghweridoand Agu (2021), Nzei et al. 

(2020),Eghwerido et al. (2020), Eghwerido 

et al. (2020d), Eghwerido et al. (2020b)and 

Agu and Eghwerido (2021). Tables 2 and 3 

provide the results of the different model test 

statistics for the data

 

Table 2.Results of test statistics for fitted models to glass fiber data with standard errors (in 

parentheses) 
Models MLEs AIC CAIC BIC HQIC 

AWIE  0.31703.1601ˆ   37.2261 37.4261 41.5124 38.9119 

  0.03161.3554ˆ w      

WFr  8023.03923.0ˆ 
 

38.79601  39.48567  47.36855  42.16763  

  2956.02476.0ˆ w
 

    

  7849.44897.1ˆ   
    

  4912.208619.16ˆ a
 

    

GIGE  88.7584163.1990ˆ 
 

50.1241 50.5308 56.5535 52.6528 

  0.00013.1976ˆ w
 

    

 0012.5489(0.0ˆ 
 

    

APSE  0.00018.282858ˆ 
 

50.8399 51.2466 57.2693 53.3686 

  0.22952.6850ˆ w
 

    

  0.02371.0530ˆ 
 

    

KAPIE  0.32241.0442ˆ 
 

52.71052  53.40017  61.28306  56.08214  

  10.591219.3039ˆ w
 

    

  2.00827.4276ˆ   
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  0.00070.0020ˆ   
    

KIE  42.67573.0231ˆ 
 

53.42339  53.83017  59.85279  55.95211  

  88.7824163.2151ˆ w
 

    

  38.05932.6961ˆ   
    

E  18.93190.6637ˆ   
179.6028  181.8201 185.9439 179.7028 

 IE  0.17741.4083ˆ 
 

180.8784 180.944 183.0215 181.7213 

APIE  284.794506.83ˆ 
 

196.3351 196.5390 200.6167 198.0108 

  0854.03195.0ˆ w
 

    

 

 

Table 3. Results of Cramer-von Mises (W), Anderson Darling (A), and the p values (p-val).   

test statistics for fitted models to glass fiber data  

Models W A p-val 

AWIE 0.2186 1.2316 0.0960 

WFr 0.2471  1.3565 0.0709 

GIGE 0.4813 2.6324 0.0134 

APSE 0.00001 0.0023 0.0183 

KAPIE 0.5063777  2.7706 0.0076 

KIE 0.5113  2.8324 0.0000 

E 0.9969 4.2902 0.0034 

 IE 0.9375 5.0649 0.0000 

APIE 0.7775 4.2384 0.0000 

 

The results of the test statistics in Table 2 

show that the AWIE model has the lowest 

AIC value. Hence, is consider as best fit for 

this data set when compared to other two, 

three and four parameters models such as the 

Kumaraswamy alpha power exponential 

(KAPIE) distribution [9], exponential (E), 

alpha power shifted exponential (APSE) 

distribution [19], inverted exponential (IE) 

distribution [1], alpha power inverted 

exponential (APIE) distribution  [2], 

generalized inverted generalized exponential 

(GIGE) distribution [20], Weibull Frechet 

distribution [21] and Kumaraswamy inverted 

exponential (KIE) 

 

 

 

6. Conclusion 

This study proposes a new class of 

exponential distribution named AWIE 

distribution. The new model extends the 

exponential distribution for analysing real-

life data. Some of its statistical structural 

properties were examined. The AWIE 

distribution was also expressed as a linear 

function of the exponential distribution. The 

model parameters were obtained by 

maximum likelihood method. A simulation 

study was used to illustrate the performance 

of the proposed model. A real-life 

application was further used to investigate 

the efficiency of the proposed model. It was 



Eghwerido, J. T.: A New Weibull Inverted Exponential Distribution: Properties and Applications 

 

FUPRE Journal of Scientific and Industrial Research, Vol.6 (1), 2022 
 

 

 69 

observed that the proposed model provide a 

better fit compared to some existing 

statistical models like Kumaraswamy alpha 

power exponential (KAPIE) distribution, 

Exponential (E) distribution, alpha power 

shifted exponential (APSE) distribution, 

inverted exponential (IE) distribution, alpha 

power inverted exponential (APIE) 

distribution, generalized inverted 

generalized exponential (GIGE) distribution, 

Weibull Frechet distribution and 

Kumaraswamy inverted exponential (KIE). 

The proposed model can also be applied to 

the field of survival lifetime data, 

economics, hydrology, growth rate in 

modeling and others. 
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