Research Article / Review Article

FUPRE JOURNAL 6(3):131-147(2022)

Gas-To-Plant Installation Analysis Using Well Performance Data

Okologume C. Wilfred^{1,*}⁽¹⁾, Akindahunsi A. Anointing²⁽¹⁾

¹ Department of Petroleum Engineering, Federal University of Petroleum Resources Effurun, Nigeria

ARTICLE INFO

Received: 18/03/2022 Accepted: 23/05/2022

Keywords

Well head, Gas turbine, Flowrate, Falcon, Natural gas

ABSTRACT

Gas-to-Plant is a system of transportation of natural gas in which gases from wellheads are delivered directly to the power plant for power generation without passing through the flow station or any gas gathering/treatment plant. The study utilized data from 88 General Electric gas turbines and 64 SIEMENS gas turbines as provided by the Manufacturing companies. Well data were collected and a model for determining the fuel requirement of gas turbines based on specific parameters was developed. Models for determining the quantity of electricity that can be generated based on any given well performance information were also developed for both Combined Cycle and Simple Cycle gas turbine types. A computer application software "Falcon" that allows for quality installation analysis, and accurate selection of gas turbines for power generation was developed. The software utilized the developed models from this study and decline equations from literature, inheriting a power output prediction absolute error margin of 3% and 5% for Simple Cycle and Combined Cycle gas turbines respectively. The deviation was large because the data were obtained from different gas turbine manufacturers. The study results suggest the exact type(s) of gas turbine power plant that will generate a required quantity of electricity over the estimated remaining life of the given well. This study shows that, if properly conditioned, single wells can be used for the generation of electricity via a gasto-plant technique.

1. Introduction

The usage of Natural gas for power generation dates back to the 1900s, stimulated by the low natural gas prices at that time. Electricity generated using natural gas turbines was first produced for public use in 1939/1940 at a plant in Neuchâtel, Switzerland with a total turbine output of 4 megawatts (MW). In 1960, North America installed a Power Plant in Port Mann, British Columbia and became the largest gas plant in the world, operating with a 100 MW capacity. A year later in 1961, the first combined-cycle plant began operation in Korneuburg, Austria. It generated 75 MW of electricity (Miser, 2015). In 2003, natural gas passed coal as the energy source with the largest installed electricity generation capacity in the United States (Uses of Natural Gas, 2015). Natural gas-fired Plants are currently among the cheapest power plants to construct. The open cycle gas turbine operates on the principle of drawing the fresh atmospheric air at ambient conditions into the compressor where the air

©Scientific Information, Documentation and Publishing Office at FUPRE Journal

^{*}Corresponding author, e-mail: okologume.wilfred@fupre.edu.ng DIO

is compressed by a centrifugal or an axial flow compressor (Adefarati and Bansal, 2019). A closed-cycle gas turbine can be defined as a gas turbine, which overcomes the drawbacks of the open cycle gas turbine (Bethel et al., 2018). In this type of turbine, the air is circulated continuously within the gas turbine with the help of a compressor, heat chamber, gas turbine, and cooling chamber. The ratios of pressure, temperature, and air velocities will be constant in this type. It performs a thermodynamic cycle, which means working fluid is circulated and used continuously again and again without leaving the system (Elprocus, 2018). The basic difference between them is the circulation of the working fluid. In the closed cycle gas turbine, the same working fluid is circulated again and again within the turbine but in the open cycle gas turbine the working fluid i.e. air is replaced again and again while flowing through the gas turbine (Mishra, 2016). They have very high thermodynamic also efficiencies compared to other power plants. Burning of natural gas produces fewer pollutants like NOx, SOx and particulate matter than coal and oil (Bethel et al., 2019). Gas turbines can operate with a wide range of fuel types. This may include: 'Pipeline' quality Natural Gas fuels, Premium liquid fuels. Liquified Natural Gas (LNG), Unconventional Gaseous Fuels (Coal Bed Methane/Shale), Biogas fuels, Natural Gas Liquids and LPG fuels, Refinery; Process Off-gas; Hydrogen Syngas, Crude Oil, Wellhead Gases. (Welch and Igoe, 2015). On the other hand, well-head gas is natural gas fuel located near the upstream oil and gas production facilities or gas that is flowed through pipes that have never undergone a regasification process (Persero, 2019). Electricity generation at or near the reservoir source and transportation by cable to the

(gas-to-power, destination(s) GTP) is possible. According to Oddmar et al. (2018), natural gas power plants have high efficiencies and correspondingly low CO2 emissions compared to other fossil fuels. This distinctive feature of natural gas has made it to be widely accepted as a clean energy alternative to other fossil fuels. Based on a study conducted in Indonesia, as engine power plant with gas from the well head gas has an electricity tariff of IDR 1,262.21 per KWh cheaper than the selling value of Perusahaan Listrik Negara (PLN) electricity of IDR 1,467.28 per KWh, for a gas engine power plant with gas fuel from the well head gas has a better economic value with an IRR of 24.78% and payback period of 4.88 years so that the gas engine power plant with gas from the wellhead can be a consideration for the policy of selecting the construction of gas fired power plants in Aceh province (Budiana and Dalimi, 2021). Nevertheless, gas-topower has been an option much considered in the US for getting energy from the Alaskan gas and oil fields to the populated areas. (Speight, 2019)

In Nigeria, the oil and gas industry operations often face complex human rights-related issues. Among other things, the cravings of these communities include a stable electricity. The communities of most oil and gas fields in Nigeria have long depended on the national power grid for the supply of electricity which in time past have only provided an epileptic supply of power to these environments and the nation at large. This work intends to provide field managers a system for evaluating various gas wells in their fields, most especially non-associated gas (NAG) wells, with the aim to select at least one well that is cost efficient to run a gas power plant that will generate a maximum power output that can supply adequate electricity over the

remaining life of the selected well with or without support (electricity supply) from the national power grid. This study developed a computer application that allows the oil and gas field manager to easily select a gas turbine power plant, given the performance data of the wells in the field. The study uses decline curve analysis to determine the production life of given well(s) at different flow rates and developed mathematical models that can determine turbine fuel gas injection rate; and vary power output to fuel injection rate.

1. Methodology

This study was carried out on well 3S, 15T, 30S, 21T, 11T, and 5S in XYZ and BMX onshore oil and gas field located in Niger Delta region of Nigeria. Well A, a gas field in West Virginia, US. Wells B, and C, are gas wells in Texas-Eagle Ford Shale. The remaining lives of the wells XYZ and BMX fields were assumed because the volume of the recoverable hydrocarbon in the wells were not given. However, Wells A, B, and C are of known volumes; 3360 MMSCF, 5000 MMSCF, and 10000 MMSCF respectively. The Falcon software was designed using Python programing language, PyCharm IDE interpreter, PyQt5 Graphic User Interface (GUI) designer, and Microsoft Excel. The python programing libraries used in the software design include: Python Pandas, Numpy, Openpyxl.

2.1 Data Gathering Description

Gas Turbines data were obtained from two gas turbine manufacturers, General Electric and SIEMENS. Data gotten include: Gas Turbine Types, Net Heating Rate, Power Output (MW), Efficiency and Frequency. Turbine fuel consumption mathematical model was derived as shown in equation 1 to 5. The average life span of the gas turbines was determined by spreading the average life span estimation of gas turbines as detailed by Duquiantan, 2019 over 150 simple gas (SC) and combine cycle (CC) gas turbines. Given the cost per KW unit of gas turbines from the 2018 capital expenditure (CAPEX) forecast, report and summary of Annual Technology Baseline (ATB), the cost of turbines 150 gas turbines was calculated (using equation 6 & 7), both CC and SC Turbines (64 SIEMENS and 88 General Electric). In addition, the number of households per KW electricity was based on a 2010 study in the US by Wilson, 2015: that infers that a household consumes about 1.3356 KW electricity per time (this was calculated from equation 8). The mathematical models equations 9 to 10 were developed by method of regression. Equations 11 to 13 are decline equations for production forecast. The gas turbine data and the study developed computer software "Falcon" application algorithms is presented in appendix A, B1 to B3, respectively. The mathematical equations used in this study are expressed below:

2.1.1 Fuel Consumption Parameters:

Net Heating Rate = NHR (Btu/KWh)

Thermal unit = TU (Btu/d)

Power Output = Output (MW)

Consumption = Q (MMSCF/D)

$$TU\left(\frac{Btu}{d}\right) = \left[NHR\left(\frac{Btu}{KWh}\right) x \ Output \ (KW) \ x \ 24\right] \left(\frac{Btu}{d}\right)$$
(1)

Given that:

1 mmscf/d = 1040 mmBtu/d

Q mmscf/d = TU

$$Q = \frac{TU\left(\frac{Btu}{d}\right) x \, 1\left(\frac{mmscf}{d}\right)}{1040 \, x \, 10^6 \left(\frac{Btu}{d}\right)}$$
(2)

$$Q = \frac{\left[NHR\left(\frac{Btu}{KWh}\right)x \ Output \ (KW) \ x \ 24\right]\left(\frac{Btu}{d}\right)x \ 1\left(\frac{mmscf}{d}\right)}{1040 \ x \ 10^6\left(\frac{Btu}{d}\right)}$$
(3)

$$Q = \left[\frac{NHR\left(\frac{Btu}{KWh}\right)x \ Output \ (MW) \ x \ 24 \ x \ 1000}{1040 \ x \ 10^6}\right] \left(\frac{mmscf}{d}\right)$$

$$(4)$$

$$Q = \left[\frac{NHR\left(\frac{Btu}{KWh}\right)x \ Output \ (MW) \ x \ 24}{1040 \ x \ 10^3}\right] \left(\frac{mmscf}{d}\right)$$

$$(5)$$

Cost of Turbine 2.1.2

Cost per unit of Simple Cycle gas Turbine = P_{SC}

Power Output of Simple Cycle gas Turbine = Output_{SC} (KW)

Cost per unit of Combine Cycle gas Turbine = P_{CC}

Power Output of Combined Cycle gas Turbine = Output_{CC} (KW)

i. Simple Cycle Gas Turbine:

 $P_{SC} = Output_{SC}(KW) x$ \$969 (6)

ii. **Combine Cycle Gas Turbine:**

 $P_{CC} = Output_{CC}(KW) \ x \ \$1,050$ (7)

2.1.3 Number of House Hold

 $N = \frac{Output(KW)}{E}$ 1.3356(KW)

2.1.4 **Power Output**

q = Well flowrate (mmscf/d) (turbine feed rate)

(9)

(8)

P = Power output (MW)

Simple Cycle i.

 $P = 4.2109(q)^{1.0573}$ ii. **Combined Cycle**

P =

(10)

2.1.5 Decline Curve Equations tf = well life (days)qo = initial flow rate (mmscf/d) qf = Abandonment rate (mmscf/d)Npd = Recoverable reserve

i. **Exponential Decline**

$$tf = \frac{N_{pd}}{q_o} \ln\left(\frac{q_o}{q_f}\right) \tag{11}$$

ii. **General Hyperbolic Decline**

$$tf = \frac{N_{pd}}{q_o} \sqrt{\frac{q_o}{q_f}}$$
(12)

iii. **Harmonic Decline**

$$tf = \frac{N_{pd}}{q_o} \left(\frac{\left(\frac{q_o}{q_f} - 1\right)}{\ln\left(\frac{q_o}{q_o}\right)} \right)$$

(13)2.2 Well Head Gas-to-Power Plant Design Layout

Figure 1: Flow process from Wellhead to Power plant and electricity to Houses

2.2 Description of the Falcon Software

Among others things, the Falcon system application is designed basically to perform $5.8006(q)^{1.0685}$ three functions:

> 1. To help oil and gas field management know if one or more wells in a partic

ular field is suitable for power generation, based on the existing power generation technology. And if available, to know the cost of the turbine, and the power rating of the turbine.

- 2. To help validate if an intended gas turbine, with known power rating, is compatible with at least one gas well in a field.
- 3. To estimate the quantity of electricity a given well can generate throughout the remaining life of the well if produced at different rates.

However, these the software shall do via the mathematical models and various loop codes running in the background of the software.

When started, the application opens with a welcome window (Plate 1) showing the name of the of the application software, a fun fact that gives a concise function of the software which also tells the riddle of why the application was given the name. Also, displayed in the welcome window is a button that links to the navigation window.

Plate 1: Falcon Welcome Window

The navigation window (Plate 2) consists of four buttons linking to the windows that perform various functions depending on the need of the user. The buttons are:

- Find Turbine by Well Data
- Find suitable Well with Turbine Data

- Find Turbine by Output
- Visit official Website of Manufacturers

Plate 2: Falcon Navigation Window The description of the first and second interface will be discussed as they form the foundation of this work.

2.2.1 Find Turbine by Well Data

Say, there exists a well with known flowrate and life span. To know if a gas turbine exists that will require exactly the volume of gas produced by the well per day as feed for the approximated life span of the gas Turbine, "Find Turbine by Well Data" button shall be clicked. This button, when clicked, leads to a window titled, "Falcon -Turbine Search" (Plate 3).

F Falcon - Turbine Search Window		-		×
Browse Turbine Browse Well Economics H	lelp			
Please enter production data here: Production (mmc/f/d) Wel Life (vears) OK	Range in Data set:			
Please enter Rages here: Range 1 Range 2 OK	Turbine Data: Manufacturer Class Nodel Output (MW)			
	To view more details, check the boxes you need to know the Clear to erase display.	n dick Show!		
	Cost of Turbine			
	Cost of Installation			
	rrequency (nz)			
	Embercy (%)			
	s	how	Clear]

Plate 3: Falcon Turbine Search Window

This window gives user an interface to find gas turbine with an available well performance information (lifespan and flowrate).

Below is the list of the content of the interface:

- 1. Production rate input box
- 2. Well life input box
- 3. Range graphic display box
- 4. Ranges input boxes
- 5. Basic Turbine data graphic display box
- 6. "Cost of Turbine" Checkbox
- 7. "Cost of Installation" Checkbox
- 8. "Turbine Type" Checkbox
- 9. "Frequency" Checkbox
- 10. "Efficiency (Hz)" Checkbox
- 11. "OK", "Show" and "Clear" buttons

The production rate input box takes the value of the flowrate of the well in million standard cubic foot per day (MMSCF/D). The Well life input box takes the value of the well life. When the "OK" button is clicked, the Turbine range graphic display box shows the exact fuel consumption rate and the ranges of the turbine(s) whose requirement for operation is consistent with the imputed well data. Given that multiple turbines are displayed in the Range graphic display box, the Range input boxes take the ranges of the particular turbine of the user's choosing. When the "OK" button is clicked, the Basic Turbine data graphic display boxes show a concise detail of the selected turbine. Detail include only: Turbine Manufacture, Turbine Class, Turbine Model, Turbine Power Output. However, depending on the information the user choses to retrieve, any of "Cost of Turbine", "Cost of Installation", "Turbine Type", "Frequency (Hz)", "Efficiency (%)" check boxes may be checked and when "Show" button is clicked, the application displays the information of the Gas Turbine by the boxes. The "Clear" button clears the newly displayed information. A flow chat of the application is shown appendix B2.

2.2.2 Find Suitable Well with Turbine Data

Given a data consisting of the flowrate of wells in a certain field. To know if there exists a well in the field which meets the basic requirement of the available Gas Turbine, this option is selected. This button, when clicked, leads to a window titled, "Falcon - Well Search" (Plate 4).

F Falcon - Well Search Window	-		Х
File			
Enter Net Power Output of Turbine (MW) Enter Turbine Net Heating Rate (Btu/KWh) Enter Turbine Frequency (Hz)			
Show Well		Back	

Plate 4: Falcon Well Search Window This window gives user an interface that allows to find Well(s) (in a field) that is suitable to operate a selected or proposed gas turbine.

Below is a list of the content of the window:

- 1. Turbine Net Power input box
- 2. Turbine Net Heating rate input box
- 3. Turbine Frequency Input box
- 4. File Upload Field data
- 5. Suggestion display box
- 6. "Show Well" and "Back" buttons

The Turbine Net Power Input box takes the Power Output of the turbine in Megawatt (MW). The Turbine Net Heating Rate Input box takes the value of the Net Heating rate of the Gas Turbine in British thermal unit per kilowatt-hour (Btu/KWh). The Turbine Frequency Input box takes the frequency of the Gas Turbine. The Upload Field data button allows user to upload field well data. When the "Show Well" button is clicked, the system displays the best fit well in the field in the Suggestion display box. The "Back button" returns the user to the "Navigation Window". A flow chat of the application is shown appendix B3.

2.2.3 Find Turbine by Power

This button, when clicked, leads to a window titled, "Decline Trend" (Plate 5).

Plate 5: Decline Trend selection Window

This window displays a selection interface which can allow user to select the type of decline trend he wishes to run (either Hyperbolic, Harmonic or Exponential). The Exponential Decline window (Plate 6) allows to evaluate a well and determine the quantity of electricity it can generate, cost and the maximum number of households it can supply electricity per time.

F Exponential Decline			- 🗆 X
Enter well detail here		Feed perio	od (years)
Reserve (mmscf)		Gimala Cuela	Combined Cycle
Turbine feed (mmscf/d)		Simple Cycle	Combined Cycle
Initial rate (mmscf/d)		Power Output	Power Output
	OK	Household	Household
	Back		
		Cost	Cost

Plate 6: Falcon Power Output Window for

Exponentially Declining Well

The content of the window is listed below.

- 1. Reserve impute box
- 2. Turbine feed rate box
- 3. Initial rate input box
- 4. Feed Period Display box

2. Result and Discussion

3.1 Results

- 5. SC Cycle Power Output display box
- 6. SC Household display box
- 7. SC Cost display box
- 8. CC Cycle Power Output display box
- 9. CC Household display box
- 10. CC Cost display box
- 11. A "OK" button and "Back Button"

Name	Flow rate	Life of	Turbine	Model	Output	Cost of	Household
of	(mmscf/d)	well	Manufacturer	Widde	(MW)	Turbine	nouscholu
Well		(years)				(US\$/unit)	
3S	1.31599	30	SIEMENS	SGT-600	5.05	4,893,450	3781
15T	4.94498	22	General Electric	LM2500DLE	32.8	34,440,000	24558
30S	2.03431	32	SIEMENS	SGT-300	7.9	7,655,100	5914
21T	5.47963	26	General Electric	SGT-300	34.2	35,910,000	25606
11T	3.18347	34	SIEMENS	SGT-400(C)	14.3	13,856,700	10706
5S	1.06188	27	SIEMENS	SGT-A05	4.0	3,876,000	2994
				(KB5S)			

Figure 2: Graph of Power output against flowrate for SC Turbine

Figure 3:	Graph of	Power output	against flowrate	for CC Turbine
-----------	----------	--------------	------------------	----------------

Flow Rate (mmscf/d)			Simple (Cycle Turbin	e	Combined Cycle Turbine		
Initial	Turbine Feed	Feed Period (years)	Power Output (MW)	Household	Cost (US\$/unit)	Power Output (MW)	Household	Cost (US\$/unit)
4.5	4	2.168	18.24	13,654	17,670,821	25.51	19,103	26,789,420
3.5	3	2.838	13.45	10.073	13,036,440	18.76	14,048	19,700,002
2.5	2	4.108	8.76	6,561	8,491,369	12.17	9,109	12,773,584
2	1.5	5.297	6.46	4,840	6,264,407	8.95	6,698	9,393,247
1.5	1.0	7.465	4.21	3,153	4,080,362	5.8	4,343	6,090,630

 Table 2: Result from Exponential Decline Window for Well A (3,360mmscf)

Table 3: Result from Exponential Decline Window for Well C (5,000mmscf)

Flov (mn	v Rate 1scf/d)		Simple (Cycle Turbin	Combined Cycle Turbine					
Initial	Turbine FeedFeedPower Output (years)(MW)		FeedPowerPowerPeriodOutputHouseholdCostOutput(years)(MW)(US\$/unit)(MW)		Feed Power Period Output How (years) (MW)		ld Cost Pow (US\$/unit) (MV		Household	Cost (US\$/unit)
4.5	4	3.227	18.24	13,654	17,670,821	25.51	19,103	26,789,420		
3.5	3	4.223	13.45	10.073	13,036,440	18.76	14,048	19,700,002		
2.5	2	6.114	8.76	6,561	8,491,369	12.17	9,109	12,773,584		
2	1.5	7.882	6.46	4,840	6,264,407	8.95	6,698	9,393,247		
1.5	1.0	11.109	4.21	3,153	4,080,362	5.8	4,343	6,090,630		

Flow Rate (mmscf/d)			Simple (Cycle Turbin	e	Combined Cycle Turbine			
Initial	al Turbine Feed Power Feed Period Outp (years) (MV		Power Output (MW)	Household	Cost (US\$/unit)	Power Output (MW)	Household	Cost (US\$/unit)	
4.5	4	6.454	18.24	13,654	17,670,821	25.51	19,103	26,789,420	
3.5	3	8.447	13.45	10.073	13,036,440	18.76	14,048	19,700,002	
2.5	2	12.227	8.76	6,561	8,491,369	12.17	9,109	12,773,584	
2	1.5	15.763	6.46	4,840	6,264,407	8.95	6,698	9,393,247	
1.5	1.0	22.217	4.21	3,153	fdr 9891351711	e-C%cle Ga	184F343ne and	Canapped 30	

Table 4: Result from Exponential Decline Window for Well C (10,000mmscf)

3.2 Discussion

Table 1 shows the result of 6 wells from different fields highlighting the basic specifications of the existing gas turbine the wells can successfully feed for the remaining life of the wells if they are produced at the specific rates. The table also shows the number of households each turbine can serve at any given time within its lifetime.

Figure 2 shows a log-log plot of Power output (MW) against Gas injections rate (Well flow rate) for Simple Cycle Turbine types. Figure 3 as well shows a log-log plot of power output (MW) against Gas injections rate (Well flow rate) for Combined Cycle Turbine types.

Table 2 shows the result of well A, having a 3,360 MMSCF of gas reserve. The table highlights the initial flowrate to produce the [given] well, the economic limit (minimum flowrate) which is also equal to the Turbine type gas requirement for power generation, the life of the well (if commissioned for power generation at those rates). The table also shows the power output, cost and the number of households the turbines can supply electricity at any given time for both Simple Cycle Gas Turbine and Combine Cycle Gas Turbine.

Table 3 shows the result of well B, having a 5,000 MMSCF of gas reserve. The table highlights the initial flowrate to produce the well, the economic limit which is also equal to the turbine gas requirement for power generation, the life of the well (if commissioned for power generation at those rates). The table also shows the power output, cost and the number of households the Turbines can supply electricity at any given time Cycle Gas Turbine.

Table 4 shows the result of well C, having a 10,000 MMSCF of gas reserve. The table highlights the initial flowrate to produce the well, the economic limit which is also equal to the turbine gas requirement for power generation, the life of the well (if commissioned for power generation at those rates). The table also shows the power output, cost and the number of households the Turbines can supply electricity at any given time for both Simple Cycle Gas Turbine and Combine Cycle Gas Turbine. The results in Table 2 to Table 4 also show that at a given well production rate, the quantity of electricity generated by a Combined Cycle Gas Turbine is higher than its Simple Cycle type, however, slightly at a higher Cost.

Among Well A, B and C, well C shows a longer sustainability of the Power generation at a given well production rate for any given Turbine because of the volume of its reserve base. That is, the larger the volume of gas recoverable from the well (reserve) the longer the well can serve as feed source for that particular Gas turbine.

4. Conclusion and Recommendations

4.1 Conclusion

The Falcon software was used to determine the quantity of electricity different gas wells can generate at any given initial production rate to a set economic rate, if a gas power plant is installed. Also, the study shows the approximate cost of the turbine types (SCGT and CCGT); and the average number of households the turbines can serve per time. Based on the result gotten from this study, it is therefore established that a single gas well may be sufficient for generating the quantity of electricity required to power a number of households (consumers) throughout the extended (remaining) life of the well. If any well on a field

is proven fit, it may therefore be commissioned for power supply to the community as a means of good-will at an efficient cost. Other than the rapport the implementation of this work will create, it may also serve as a means of revenue for the operating company. The implementation of the project in real life scenario may be subjected to the law and regulation of the government, the capacity of the operating company, and the availability of viable well in the operating field. In addition, the software is limited to the available data on which it was built. However, subsequent versions of the software will allow for multiple imputation of well data, more backend gas turbine data set and the deviation incurred in the models due to limited and different turbine manufactures will be reduced to zero.

4.2 Recommendation

It is recommended that further study should factor in the possibility of a rising number of households because of infrastructural development. Hence, if the design speculates a certain number of households over an extended period of time for stable electricity supply, then the possibility of a rapid increase in the rate of migration to the feed environment should be factored into the selection and installation plan. Also, the Falcon software should be optimized to capture more turbine data points. More so, the cost of installation (set up) of turbine should be considered in further studies as this study only accounts for the cost of turbine per unit. In addition, the developed models, equations 9 and 10, have absolute error of about 5% and 3% respectively. This should be factored into the installation analysis and turbine design. However, further review may be done to optimise the equations to reduce the prediction error to as low as possible, say, less than 1%. Further study may consider the application of the Falcon software not only for Gas-to-Plant technique but also Flare-to-Plant.

REFERENCES

- [1] Adefarati, T., & Bansal, R. (2019). Energizing Renewable Energy Systems and Distribution Generation. *Pathways to a Smarter Power System*.
- [2] Bethel, A., Jordan, H., James, J., Kailyn,S., & Donev, J. (2019). *Natural gas power plant*. Retrieved from Energy

Education:

www.energyeducation.ca/encyclopedia/ Natural_gas_power_plant

- [3] Bethel, A., Jordan, H., Kailyn, S., & Donev, J. (2018). Combined cycle gas plant. Retrieved from Energy Education: www.energyeducation.ca/encyclopedia/ Combined_cycle_gas_plant
- [4] Budiana, D., & Dalimi, D. (2021). The Economics Comparison of Power Plants fueled by Wellhead gas and LIquified natural gas in Aceh Province. *Indonesia in their economic analysis*.
- [5] Duquiantan, A. (2019). Average age of US power plant fleet flat for 4th-straight year in 2018. Retrieved from S&P Global Market Intelligence: https://www.spglobal.com/marketintelli gence/en/newsinsights/trending/gfjqeFt8GTPYNK4W X57z9g2#:~:text=16%20Jan%2C%2020 19-,Average%20age%20of%20US%20p ower%20plant%20fleet,4th%2Dstraight %20year%20in%202018&text=The%20 capacity%2Dweighted%20average%20a ge,four
- [6] Elprocus. (2018). What is a closed cycle Gas Turbine & its working. Retrieved from Elprocus: www.wlprocus.com/what-is-a-closedcycle-gas-turbine-its-working
- [7] Miser, T. (2015). A Short History of the Evolving Uses of Natural Gas. Retrieved from Power Engineering: https://www.power-eng.com/coal/ashort-history-of-the-evolving-uses-ofnatural-gas/#gref
- [8] Mishra, P. (2016). Difference Between Closed Cycle Gas Turbine and Open Cycle Gas Turbine. Retrieved from Mechanical Booster: www.mechanicalbooster.com/2016/06/di

fferece-between-closed-cycle-gasturbine-and-open-cycle-gas-turbine

- [9] Oddmar, E., Eivind, B., & Steven, J. (2018). Optimization of Pure-Component LNG Cascade Processes with Heat Integration. *Energies*, 202(11). doi:10.3390/en11010202
- [10] Persero, P. P. (2019). Electric Power Supply Business Plan (2019-2028).
- [11]Speight, J. G. (2019). Natural Gas (Second Edition).
- [12]*Uses of Natural Gas.* (2015). Retrieved from Union of Concerned Scientists:

https://www.ucsusa.org/resources/usesnatural-gas

- [13]Welch, M., & Igoe, B. (2015). Combustion, Fuels and Emissions for Industrial Gas Turbines. 3rd Middle East Turbomachinery Symposium (METS III). Doha, Qatar.
- [14]Wilson, L. (2015). Average household electricity use around the world. Retrieved from Shrink That Footprint: www.shrinkthatfootprint.com/averag

e-household-electricity-consumption

Appendix A: Gas Turbine Data									
SN	Manufacturer	Class	Turbine Type	Model	Net Power Output (MW)	Efficiency (%)	SC Net Heat Rate (Btu/kWh, LHV)	Frequency	Fuel consumption per day (mmscf/d)
1	GE	В	SC Plant	6B.03	44	33.5	10,180	50/60 Hz (Geared)	10.33662
2	GE	В	CC Plant	6B.03	68	51.6	6614	50/60 Hz (Geared)	10.37889
3	GE	E	SC Plant	9E.03	132	34.6	9,860	50	30.03508
4	GE	E	SC Plant	9E.04	145	37	9,210	50	30.81808
5	GE	E	SC Plant	GT13E2	210	38	8,980	50	43.51846
6	GE	E	SC Plant	7E.03	91	33.9	10,060	60	21.126
7	GE	E	CC Plant	9E.03	204	53.3	6399	50	30.12452
8	GE	E	CC Plant	9E.04	216	54.9	6220	50	31.00431
9	GE	E	CC Plant	GT13E2	305	55.1	6189	50	43.56104
10	GE	E	CC Plant	7E.03	142	52.5	6,505	60	21.31638
11	GE	F	SC Plant	6F.01	57	38.4	8,880	50/60 Hz (Geared)	11.68062
12	GE	F	SC Plant	6F.03	88	36.8	9,277	50	18.83945
13	GE	F	SC Plant	9F.03	265	37.8	9,020	50	55.16077
14	GE	F	SC Plant	9F.04	288	38.7	8,810	50	58.55262
15	GE	F	SC Plant	9F.05	314	38.6	8,846	50	64.09948
16	GE	F	SC Plant	9F.06	359	41.9	8,146	50	67.48648
17	GE	F	SC Plant	7F.04	198	38.6	8,840	60	40.392
18	GE	F	SC Plant	7F.05	243	39.8	8,570	60	48.05792
19	GE	F	CC Plant	6F.01	85	57.9	5896	50/60 Hz (Geared)	11.56523
20	GE	F	CC Plant	6F.03	135	56.9	5998	50	18.68608
21	GE	F	CC Plant	9F.03	412	59.1	5778	50	54.93545
22	GE	F	CC Plant	9F.04	443	60.2	5666	50	57.92395
23	GE	F	CC Plant	9F.05	493	60.7	5619	50	63.92693
24	GE	F	CC Plant	9F.06	532	62.2	5,459	50	67.01972
25	GE	F	CC Plant	7F.04	305	59.7	5,715	60	40.22481
26	GE	F	CC Plant	7F.05	376	60.4	5,649	60	49.01594
27	GE	Н	SC Plant	9HA.01	446	43.1	7,910	50	81.41215
28	GE	Н	SC Plant	9HA.02	571	44	7,740	50	101.9894
29	GE	Н	SC Plant	7HA.01	290	42	8,120	60	54.34154
30	GE	Н	SC Plant	7HA.02	384	42.6	8,009	60	70.97206

Appendices Appendix A: Gas Turbine Data

31

32

33

34

35

36

37

38

39

GE

GE

GE

GE

GE

GE

GE

GE

GE

Η

Н

Н

Η

Η

Н

AD

AD

AD

SC Plant

CC Plant

CC Plant

CC Plant

CC Plant

CC Plant

SC Plant

CC Plant

SC Plant

7HA.03

9HA.01

9HA.02

7HA.01

7HA.02

7HA.03

TM2500

TM2500

TM2500

10	<u>a</u> n						6 200	50	
40	GE	AD	CC Plant	TM2500	50.5	50.9	6,703	60	7.81157
41	GE	AD	SC Plant	LM2500	23.1	33.2	10,265	50	5.47203
42	GE	AD	SC Plant	LM2500	24.1	34.4	9 920	60	5 51705
12	CE		SC Plant	LM2500DLE	21.1	247	0.825	50	4 04776
43	OE	AD	SC Flain	LW2500DLE	21.0	34.7	9,035	50	4.94770
44	GE	AD	SC Plant	LM2500DLE	22.7	35.9	9,501	60	4.97706
45	GE	AD	CC Plant	LM2500	34.2	49.1	6,943	50	5.47963
46	GE	AD	CC Plant	LM2500	35	49.9	6.844	60	5.52785
17	GE	۸D	CC Plant	I M2500DI F	32.8	52.2	6 533	50	1 9/198
40	CE	AD	CC Plant	LM2500DLE	22.0	52.2	0,555	50	4.04(20
48	GE	AD	CC Plant	LM2500DLE	33.2	52.9	6,456	60	4.94629
49	GE	AD	SC Plant	LM2500+	29.3	34.7	9,826	50	6.64389
50	GE	AD	SC Plant	LM2500+	31	36.1	9,453	60	6.76253
51	GE	AD	SC Plant	I M2500+DI F	30.1	36.5	9 338	50	6 48632
50	CE		CC Dlant	LM2500 DLE	20.0	20	0,490	<i>5</i> 0	6.0575
52	GE	AD	SC Plain	LM2300+DLE	50.0	30	9,482	50	0.09373
53	GE	AD	CC Plant	LM2500+	41.5	49.2	6,931	50	6.63777
54	GE	AD	CC Plant	LM2500+	43	50.1	6,809	60	6.75662
55	GE	AD	CC Plant	LM2500+DLE	44	53.4	6.384	50	6.48222
56	GE	۸D	CC Plant	I M2500+DI F	13.9	54.2	6 299	60	6 38137
50	CE		SC Plant	LM2500+DEL	73.7	24.6	0,277	50	7 65205
57	GE	AD	SC Plain	LW12300+04	55.0	54.0	9,870	50	7.03505
58	GE	AD	SC Plant	LM2500+G4	36.2	36.5	9,348	60	7.80918
59	GE	AD	SC Plant	LM2500+G4 DLE	32.5	36.5	9,352	50	7.014
60	GE	AD	SC Plant	LM2500+G4 DLE	33.6	38.4	8.897	60	6.8986
61	GE	AD	CC Plant	I M2500+G4	18.2	10.6	6 884	50	7 65713
60	OE	AD		LM2500+04	40.2	49.0	0,004	50	7.03713
62	GE	AD	CC Plant	LM2500+G4	50.3	50.7	6,729	60	7.81082
63	GE	AD	CC Plant	LM2500+G4 DLE	47.7	53.8	6,343	50	6.98218
64	GE	AD	CC Plant	LM2500+G4 DLE	47.7	54.7	6,239	60	6.8677
65	GE	AD	SC Plant	LM6000 PC	45	39.4	8 651	50	8 98373
66	CE		SC Plant	LM6000 PC	50	20.4	8 651	50 60	0.08102
00	OE GE	AD	SC Flain	LM0000 FC	50	39.4	8,031	50	9.96192
6/	GE	AD	SC Plant	LM6000 PG	55	39.3	8,692	50	11.03215
68	GE	AD	SC Plant	LM6000 PG	57	39.3	8,692	60	11.43332
69	GE	AD	SC Plant	LM6000 PF	44	41.2	8,281	50	8.4084
70	GE	AD	SC Plant	LM6000 PF	49	41.2	8.281	60	9.3639
71	GE	AD	SC Plant	I M6000 PE	53	41.3	8 271	50	10 11607
71	OE	AD	SC Flain		55	41.5	0,271	50	10.11007
12	GE	AD	SC Plant	LM6000 PF +	58	41.3	8,271	60	11.07042
73	GE	AD	CC Plant	LM6000 PC	59	51.9	6,573	50	8.94939
74	GE	AD	CC Plant	LM6000 PC	66	51.9	6,573	60	10.01118
75	GE	AD	CC Plant	LM6000 PG	73	52.2	6.535	50	11.00896
76	CE		CC Plant	LM6000 PG	76	52.2	6 5 2 5	60	11.00020
70	OE	AD			70	52.2	0,555	50	0.07025
//	GE	AD	CC Plant	LM6000 PF	58	55.2	6,179	50	8.27035
78	GE	AD	CC Plant	LM6000 PF	64	55.2	6,179	60	9.12591
79	GE	AD	CC Plant	LM6000 PF +	70	55.9	6,105	50	9.86192
80	GE	AD	CC Plant	I M6000 PF +	77	55.9	6 105	60	10 84812
00	CE		SC Dlant	LM000011	117	42.1	7,025	50	21 2075
01	OE GE	AD	SC Flain	LIVISTOO	117	43.1	7,925	50	21.3973
82	GE	AD	SC Plant	LMS100	117	44.2	7,718	60	20.8386
83	GE	AD	SC Plant	LM9000 (Low Nox)	67	41.8	8,155	50	12.60888
84	GE	AD	SC Plant	LM9000 (Spirint)	75	42.1	8,096	60	14.01231
85	GE	AD	CC Plant		142	52.2	6 540	50	21 43108
05	CE		CC Dlant	LMS100	140	52.2	6,340	50	20.70000
80	GE	AD		LMS100	140	33	0,438	00	20.79909
87	GE	AD	CC Plant	LM9000 (Low Nox)	88	55.9	6,109	50	12.40597
88	GE	AD	CC Plant	LM9000 (Spirint)	95	54.9	6,220	60	13.63615
89	SIEMENS	Н	SC Plant	SGT5-8000HL	481	42.6	8006	50	88.86893
90	SIEMENS	н	SC Plant	SGT5-8000HI	593	12.8	7972	50	109.095
01	GIEMENIC	11		SGT5-8000HL	105	42.0	0010	50	107.075
91	SIEMENS	н	SC Plant	SG10-9000HL	405	42.0	8010	00	/4.802/1
92	SIEMENS	Н	CC Plant	SGT5-8000HL	708	63	5416	50	88.48627
93	SIEMENS	Н	CC Plant	SGT5-9000HL	870	63	5416	50	108.7331
94	SIEMENS	Н	CC Plant	SGT6-9000HL	595	63	5416	60	74.36346
05	SIEMENS	ц	SC Plant	SGT5 8000H	450	41	8322	50	86 41004
) <i>5</i>	GIEMENIO	11		SG15-000011			5502	50	05.41704
90	SIEMENS	H	CC Plant	SCC2-8000H	005	01	5583		85.6/208
97	SIEMENS	Н	SC Plant	SGT6-8000H	310	40	8530	60	61.02483
98	SIEMENS	Н	CC Plant	SCC6-8000H	460	61	5611		59.56374
99	SIEMENS	F	SC Plant	SGT5-4000F	329	41	8322	50	63 18192
100	SIEMENC	Ē	CC Plant	SCC5 4000E	175	50 7	5715	20	67 61000
100	SIEWIEINS	г Т	CC Plant	SCC3-4000F	4/5	39.1	5/15	~~~	02.04888
101	SIEMENS	F	SC Plant	SG16-5000F(A)	215	39.5	8638	60	42.85977
102	SIEMENS	F	SC Plant	SGT6-5000F(B)	260	40	8530	60	51.18212
103	SIEMENS	F	CC Plant	SGT6-5000F(A)	325	59.5	5734	60	43.0072
104	SIEMENS	F	CC Plant	SGT6-5000F(B)	387	59.6	5725	60	51 127
107	DIDITILIND	1		DO10 20001 (D)	507	57.0	5145	00	51.147

430

661

838

438

573

640

33.6

48.4

35.9

43.2

63.5

64.1

62.3

63.4

63.9

34.8

49.8

36.6

7,897

5378

5320

5,481

5,381

5,342

9,794

6,851

9,330

50

50

60

60

50

50

60

78.36254

82.03518

102.8806

55.40026

71.15338

78.89723

7.59412

7.65204

7.72955

105	SIEMENS	Е	CC Plant	SGT6-2000E	117	35.4	9638	60	26.02355
106	SIEMENS	Е	CC Plant	SCC6-2000E	174	52.2	6533	60	26.23372
107	SIEMENS	Е	SC Plant	SGT-800E(A)	49.9	39.4	8670	50/60	9.98347
108	SIEMENS	Е	SC Plant	SGT-800E(B)	54	39.1	8726	50/60	10.87344
109	SIEMENS	Е	SC Plant	SGT-800E(C)	57	40.1	8502	50/60	11.18329
110	SIEMENS	Е	SC Plant	SGT-800E(D)	62.5	41.1	8302	50/60	11.97394
111	SIEMENS	Е	CC Plant	SGT-800E(A)	71.2	57.2	5969		9.8081
112	SIEMENS	Е	CC Plant	SGT-800E(B)	77.3	56.9	5993		10 69067
113	SIEMENS	Ē	CC Plant	SGT-800E(C)	80.7	57.9	5896		10.98085
114	SIEMENS	Ē	CC Plant	SGT-800E(D)	88	59	5782		11 74127
115	SIEMENS	Ľ	SC Plant	SGT-750	39.8	40.3	8456	50/60	7 7669
116	SIEMENS		CC Plant	SGT-750	51 55	53.25	6407	20,00	7 62215
117	SIEMENS		SC Plant	SGT 700	32.8	37.2	0170		6.04108
118	SIEMENS		CC Plant	SGT-700	45 2	52.3	6517		6 79793
110	SIEMENS		SC Plant	SGT-600	24.5	33.6	10161	50/60	5 74465
120	SIEMENS		CC Plant	SGT-600	35.9	/0.0	68/13	50/60	5 66936
120	SIEMENS		SC Plant	SGT 400(A)	10.4	49.9	0843	50/60	2 25256
121	SIEMENS		SC Plant	SGT 400(R)	12.0	24.8	9802	50/60	2.33230
122	SIEMENS		SC Flain	SCT 400(B)	14.9	25 4	9613	50/60	2.92174
125	SIEMENS		SC Plant	SG1-400(C)	14.5	33.4 20.6	9047	50/60	3.10347
124	SIEWIENS		SC Plant	SG1-300	7.9	30.0	11139	50/60	2.03431
125	SIEMENS		SC Plant	SG1-100(A)	5.05	30.2	11292	50/60	1.31399
126	SIEMENS		SC Plant	SG1-100(B)	5.4	31	11007	50/60	1.3/164
127	SIEMENS	AD	SC Plant	SGI-A65 (50Hz	61.9	43.34	7874	50	11.24701
				DLE)					
128	SIEMENS	AD	SC Plant	SG1-A65 (50Hz	65.9	43.8	7799	50	11.85993
120	SILINILI (S		Serian	DLE with ISI)	0015	1010		20	11100770
129	SIEMENS	AD	SC Plant	SGT-A65 (60Hz	59.6	43.2	7895	60	10.8591
	SILINILI (S		Serian	DLE)	0710		1070	00	1010071
130	SIEMENS	AD	SC Plant	SGT-A65 (60Hz	64.9	43.3	7877	60	11 79778
150	DIEMERO		DC I lait	DLE with ISI)	04.9	45.5	/0//	00	11.77770
131	SIEMENS	۸D	SC Plant	SGT-A65 (50Hz	67.4	41.3	8269	50	12 8611
151	SILWILING	AD	SC I lant	WLE with ISI)	07.4	41.5	020)	50	12.0011
132	SIEMENS		SC Plant	SGT-A65 (60Hz	70.8	41.4	8212	60	13 46651
132	SIEWIEINS	AD	SC Flain	WLE with ISI)	70.8	41.4	0242	00	15.40051
133	SIEMENS	AD	CC Plant	SGT-A65 (DLE)	73	54.6	6249	50	10.52709
13/	SIEMENS	٨D	CC Plant	SGT-A65 (DLE	83	54.2	6204	50	11 88383
134	SILWILING	AD	CC I lain	with ISI)	85	54.2	0204	50	11.00505
125	STEMENIC	40	SC Diant	SGT-A45 (15	41	28.0	0777	50	9 20/10
155	SIEMIENS	AD	SC Plant	degree ambient)	41	36.9	0///	50	8.30419
126	CIEMENIC		SC Diant	SGT-A45 (30	20.2	20.2	2014	50	0 00 15 1
130	SIEMEINS	AD	SC Plant	degree ambient)	39.5	38.3	8914	50	8.08451
107		4.0		SGT-A45 (15	4.4	40.4	0.477	(0)	0.0700
137	SIEMENS	AD	SC Plant	degree ambient)	44	40.4	8477	60	8.60769
100				SGT-A45 (30	20.6	20.4	0.660	<i>c</i> 0	7.01.400
138	SIEMENS	AD	SC Plant	degree ambient)	39.6	39.4	8660	60	7.91409
			~~~	SGT-A35 (G62)					
139	SIEMENS	AD	SC Plant	DLE	27.2	36.4	9387	50/60	5.89226
				SGT-A35 (GT62)					
140	SIEMENS	AD	SC Plant	DLE	29.9	37.5	9089	50/60	6.27115
				SGT-A35 (GT61)					
141	SIEMENS	AD	SC Plant	DLE	32.1	39.3	8681	50/60	6.43066
				SGT-A30 (DI F)					
142	SIEMENS	AD	SC Plant	34MW	32.5	38.3	8907	60	6.67998
1/13	SIEMENS		SC Plant	SCT A30 34MW	33.7	38 5	8873	60	6 70844
143	SIEMENS		SC Plant	SCT A30 38MW	37.4	30.7	8600	60	7 42280
144	SILWILING	AD	SC I lan	SGT A20 (50Hz	57.4	39.1	8000	00	7.42209
145	SIEMENS	AD	SC Plant	DIE 24MW	31.9	37.3	9141	50	6.729
140	CHEMENIC	4.0	CC Dlant	DLE) 54WIW	26.6	20 7	0012	50	7 44242
140	SIEMEINS	AD	SC Plant	SGT-A30 38MW	30.0	38.7	8815	50	7.44343
147	SIEMENS	AD	CC Plant	SGI-A35 (G62)	37.7	50.2	6801	50/60	5.91651
148	SIEMENS	AD	CC Plant	SG1-A35 (G162)	39.8	51.4	6639	50/60	6.09809
-				DLE					
149	SIEMENS	AD	CC Plant	SGT-A35 (GT61)	42.6	52.8	6464	50/60	6.35472
				DLE					
150	SIEMENS	AD	SC Plant	SGT-A05 (KB5S)	4	29.7	11504	50/60	1.06188
150	SIEMENS	AD	SC Plant	SGT-A05 (KB5S)	4	29.7	11504	50/60	1.06188
151	SIEMENS	AD	SC Plant	SGT-A05 (KB7S)	5.4	32.3	10570	50/60	1.31719
152	SIEMENS	AD	SC Plant	SGT-A05 (KB7HE)	5.8	33.2	10282	50/60	1.3762





Appendix B1: Application process flow chart



Appendix B2: Turbine Search Flow Chart/Algorithm



Appendix B3: Well Search Flow Chart/Algorithm