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ABSTRACT 

Weld undercut is a common welding defect that occurs when the weld metal 

penetrates too deeply into the base metal, creating a groove or undercut along the 

base metal adjacent to the weld. To improve and predict this weld defect with 

respect to the weld current, voltage and gas flow rate factors, artificial neural 

network (ANN) was employed. 100 welded specimens of mild steel, measuring 

60mm x 40mm x10mm were prepared and measured using the V-WAC gauge. The 

results were employed to train ANN. The research produced an R2 of 93% in 

comparison to the experimental result on a fitted line plot using regression 

analysis, while correlation analysis obtained in the training and validation exercise 

from ANN were all above 80%. Result of the study have shown that ANN is a 

robust predictive tool in welding which could help reduce trial and error in welding 

processes. 
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1. INTRODUCTION 

Metal welding is a process that joins two 

metal components by heating the surfaces 

to the point of melting and then fusing them 

together. The resulting bond is strong and 

durable, making it a common method for 

fabricating and repairing metal structures, 

machinery, and equipment (Dhobale and 

Mishra, (2015) and (Etin-osa and Achebo, 

2017). Weld undercut is a common welding 

defect that occurs when the weld metal 

penetrates too deeply into the base metal, 

creating a groove or dent along the base 

metal adjacent to the weld (Etin-Osa and 

Ogbeide, 2021). Undercut can weaken the 

joint and reduce its load-carrying capacity, 

and can also provide a place for cracks to 

initiate and propagate. Undercut can be 

caused by several factors, including:  

 Incorrect welding 

technique:Welding too fast or too 

slow,or using incorrect welding 

parameters.  

 Improper joint preparation: Poor 

joint preparation, such as not 

removing all contaminants from the 

base metal before welding. 

 Incorrect electrode selection: Using 

the wrong type of electrode can 

cause undercut if it does not provide 

adequate penetration into the base 

metal.  

 Inadequate joint design: Joint 

design that does not provide 

adequate access to the root of the 

joint can result in undercut.  

 Improper shielding: Improper 

shielding can cause undercut if it 
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allows the base metal to become 

contaminated during welding.  

It's important to detect and prevent undercut 

through proper welding techniques, joint 

preparation, electrode selection, joint 

design, and shielding, as well as through 

inspection and testing (Achebo, 2011) 

(Allen et al, 1985) and (Imhansoloeva et al, 

2018). If undercut is detected, it can be 

corrected through grinding the undercut to 

remove it, and then rewelding. Undercut in 

welds can be measured using a variety of 

methods, including:  

 Visual inspection& Measurement: 

Undercut can be identified by visual 

inspection using a magnifying lens, 

V-Wac gauge, digital depth gauge, 

or fluorescent penetrant inspection 

(FPI). This method is best suited for 

detecting undercut in relatively 

shallow welds.  

 Ultrasonic testing (UT): UT uses 

high-frequency sound waves to 

inspect the weld and detect any 

discontinuities, including undercut. 

This method is best suited for 

detecting undercut in deeper welds.  

 Radiographic testing (RT): RT uses 

X-rays or gamma rays to inspect the 

weld and detect any discontinuities, 

including undercut. This method is 

best suited for detecting undercut in 

deeply buried welds.  

 Magnetic particle inspection (MPI): 

MPI uses a magnetic field and iron 

oxide or iron oxide-coated magnetic 

particles to inspect the weld and 

detect any discontinuities, including 

undercut.  

 Eddy current testing (ET): ET uses 

a magnetic field and induced 

currents to inspect the weld and 

detect any discontinuities, including 

undercut. The method used to 

measure undercut will depend on 

the type of weld, the material being 

welded, the size of the undercut, and 

the level of accuracy required. In 

many cases, a combination of 

methods may be used to accurately 

measure and evaluate undercut in a 

weld (Achebo, 2012). 

While it is important to detect and prevent 

weld undercutting through best practices 

such as outlined above, In this work, 

emphasis is placed on predicting weld 

undercut using artificial neural network 

(ANN) (Achebo 2012), (Achebo, 2011) and 

(Achebo and Omoregie, 2015). This 

technique offers a more precise way of 

predicting good quality weld, avoiding the 

trial and error approach. 

 

2. MATERIALS AND METHODS 

2.1. Materials 

200 coupons measuring 60mm x 40mm 

x10mm were prepared for welding. The 

sample material is made from mild steel 

type. To weld these coupons, input 

parameters in Table 1 was fed into design 

expert 13.  

 

2.2. Method of Data Collection and 

Analysis 

The central composite design matrix using 

response surface methodology of design 

expert 13 was employed to create the design 

of experiment shown in Table 2. To perform 

the experiment, the prepared 200 coupons 

were divided into 20 groups with 10 

coupons for each group. These groups 

corresponded to the numbers of run 

presented in Table 2. The tungsten inert gas 

(TIG) welding equipment presented in 

Figure 1, following the value of current, 

voltage and gas flow rate provided for each 

run was used to weld the coupons. A total of 

100 samples were obtained with 5 samples 

per group. 

Weld undercut is the unfilled part of a 

welded plate, this defective area usually 

occurs at the bottom part of the welded part 

as shown in Figure 2.Presented in Figure 3 
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is the Digital depthgaugeemployed for the 

measurement of weld undercut. 

 

 

 

       Table 1: Process parameters and their levels 

Factors Unit Symbol Low (-1) High (+1) 

Welding Current Ampere I 150 180 

Welding Voltage Volts V 16 19 

Gas Flow Rate Lit/min GFR 13 16 

 

Table 2: Design of experiment (DOE) matrix 

Run Current (A) Voltage (V) 

Gas flow 

rate Lit/min 

1 165.000 17.500 14.500 

2 180.000 16.000 16.000 

3 150.000 19.000 16.000 

4 165.000 17.500 14.500 

5 165.000 17.500 14.500 

6 165.000 20.023 14.500 

7 180.000 19.000 16.000 

8 165.000 17.500 14.500 

9 150.000 19.000 13.000 

10 165.000 17.500 14.500 

11 180.000 16.000 13.000 

12 139.773 17.500 14.500 

13 180.000 19.000 13.000 

14 165.000 14.977 14.500 

15 190.227 17.500 14.500 

16 165.000 17.500 11.977 

17 165.000 17.500 17.023 

18 150.000 16.000 13.000 

19 150.000 16.000 16.000 

20 165.000 17.500 14.500 

 

 
Figure 1: Tungsten Inert Gas welding equipment 
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Figure 2: Weld samples 

 

3. RESULTS AND DISCUSSION 

 

To predict the weld undercut using ANN, 

the network has to be trained with 

actualexperimental response. The design 

matrix showing the real value of three input 

variables namely; current (Amp), voltage 

(volts) and gas flow rate (L/min) and the 

weld undercut response is presented in 

Table 3. 

Table 3: Design matrix showing the real values and the experimental values 

 

 

 Factor 1 Factor 2 Factor 3 Response 1 

Run A:Weld Current B:Weld Voltage C:Gas flow rate Weld undercut 

 Ampere Volt Lit/min  (mm) 

1 165.000 17.500 14.500 0.080 

2 180.000 16.000 16.000 0.060 

3 150.000 19.000 16.000 0.060 

4 165.000 17.500 14.500 0.070 

5 165.000 17.500 14.500 0.080 

6 165.000 20.023 14.500 0.050 

7 180.000 19.000 16.000 0.050 

8 165.000 17.500 14.500 0.080 

9 150.000 19.000 13.000 0.070 

10 165.000 17.500 14.500 0.080 

11 180.000 16.000 13.000 0.080 

12 139.773 17.500 14.500 0.090 

13 180.000 19.000 13.000 0.040 

14 165.000 14.977 14.500 0.070 

15 190.227 17.500 14.500 0.070 

16 165.000 17.500 11.977 0.070 

17 165.000 17.500 17.023 0.050 

18 150.000 16.000 13.000 0.090 

19 150.000 16.000 16.000 0.060 

20 165.000 17.500 14.500 0.080 

Figure 3:Digital depth guage 
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Figure 4: Network properties interphase for predicting weld undercut response 
 

 

 

Figure 5: Network training diagram for predicting Weld Undercut responses 

 

To effectively train the network, Figure 4 

present the configuration interphase for 

neural network, where all parameters were 

set and the feed forward backprop was 

chosen amongst other network type to yield 

the best results.  Current, voltage and weld 

speed information provided in Table 1 were 

inputted into ANN to output the Weld 

Undercut. 

Figure 5 present the neural network 

diagram for predicting the Weld Undercut 

responses. Data division algorithm was set 

to random (dividerand), training algorithm 

was set to Levenberg-Marquardt (trainlm), 

and performance algorithm was set to Mean 

squared error (mse). 

Figure 6 presents the performance curve for 

the trained network. The best validation 

performance was obtained at epoch 1. 

In MATLAB software, an epoch can be 
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thought of as a completed iteration of the 

training procedure of your artificial neural 

network. Which means, once all the vectors 

in your training set have been used or gone 

through your training algorithm, one epoch 

has been attained. Thus, the "real-time 

duration" of an epoch is dependent on the 

training method used. The best prediction 

for the Weld Undercut responses was 

achieved at epoch 1, although, a total of 7 

epochs where used in the iteration process. 

 

Figure 6: Performance curve for trained network to predicting Weld Undercut responses 
 

Figure 7 shows the number of epochs used 

up during the training process. 1 epoch, 

signifies one complete algorithm training. 1 

epoch was used and Figure 7 and shows that 

at the 1stepoch, best prediction was 

achieved. From the dotted red lines for 

validation checks in Figure 7, it could be 

seen that the lowest failure was at epoch 1. 

Figure 8 present the training, validation and 

testing plot with correlation coefficient (R) 

of over 80% which signifies a robust 

prediction for the Weld Undercut. The 

dotted diagonal line on each plot indicates 

the line of best fit which indicate a perfect 

prediction and a correlation of 1. 

The comparison plote between the 

training results and validation results 

from Figure 8 is given in Table 4. 

 

In comparing the prediction strength 

of ANN to the experimental results, 

Regression Analysis based on the 

fitted line plot shown in Figure 9for 

Weld Undercut were performed to 

produce equation 1 with Table 5 as its 

model summary 

EXP = 0.000144 + 0.9985* ANN 

 

 

 



Igbinake et al. (2023)/ FUPRE Journal, 7(1): 138-147(2023) 

Fupre Journal 7(1), 138 - 147(2023)  144 
 

 

Figure 7: Neural network gradient plot for predicting Transverse responses 
 

 

Figure 8: Regression plot of training, validation and testing for Weld Undercut responses 
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Table 4: Comparison Table between Experimental value vs ANN trained result of weld 

undercut responses. 

 

S/N Input parameters Exp 

Responses 

ANN 

Prediction 

Current 

(ampere) 

Voltage 

(Volts) 

GFR 

(Lit/min) 

Weld Undercut 

(mm) 

Weld Undercut 

(mm) 

1 165.000 17.500 14.500 0.080 0.078 

2 180.000 16.000 16.000 0.060 0.061 

3 150.000 19.000 16.000 0.060 0.063 

4 165.000 17.500 14.500 0.070 0.078 

5 165.000 17.500 14.500 0.080 0.078 

6 165.000 20.023 14.500 0.050 0.046 

7 180.000 19.000 16.000 0.050 0.051 

8 165.000 17.500 14.500 0.080 0.078 

9 150.000 19.000 13.000 0.070 0.071 

10 165.000 17.500 14.500 0.080 0.078 

11 180.000 16.000 13.000 0.080 0.078 

12 139.773 17.500 14.500 0.090 0.089 

13 180.000 19.000 13.000 0.040 0.043 

14 165.000 14.977 14.500 0.070 0.072 

15 190.227 17.500 14.500 0.070 0.068 

16 165.000 17.500 11.977 0.070 0.069 

17 165.000 17.500 17.023 0.050 0.048 

18 150.000 16.000 13.000 0.090 0.091 

19 150.000 16.000 16.000 0.060 0.058 

20 165.000 17.500 14.500 0.080 0.078 

 

       

Table 5: Model Summary for ANN 

S R-sq R-sq(adj) 

0.0027717 96.34% 96.14% 

 

The model summary values obtained 

in Table 5 and fitted line plot presented 

in Figure 9 for ANN shows that ANN 

has an R2 prediction strength of 96.34% 

which is robust enough to predict 

beyond the given input ranges.  
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Figure 9: Regression plot of Experimental versus predicted Weld Undercut responses 
 

4. CONCLUSION 

 

Weld undercut is a defect in welded metal 

which can lead to quick failure of the weld 

component under loading and predicting its 

magnitude would be a great preventive 

measure to mitigate against failure. The 

study has developed and applied predictive 

expert models to estimateWeld undercut of 

TIG mild steel weld using ANN. This 

research demonstrates the predictive 

effectiveness of ANN in the field of 

welding. 
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