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ARTICLE INFO 

 

ABSTRACT 

The well-known arc welding technique of Tungsten Inert Gas (TIG) welding is 

widely used to join thin pieces of practically all ferrous and non-ferrous 

materials. However, there have been many improvements made to the TIG 

welding process as a result of the increased interest of industries in using the 

method for joining components with mid-thick sections. In the study, emphasis 

was placed on the density of the TIG electrode being welded with mild steel in 

which the studies employed 100 pieces of coupons made of mild steel that were 80 

x 40 x 10 (mm) in size. Using 5 specimens each time, the experiment was done 20 

times. The plates' edges were machined and bevelled before being welded using 

tungsten inert gas welding equipment. The Response Surface Methodology 

(RSM) and the Artificial Neural Network (ANN) were used to ascertain and 

optimize the electrode density of the welded specimen. The RSM model generated 

a numerically ideal solution with the following values: 200.72A current, 20V 

voltage, 2.40mm wire diameter, and 20m/s wire feed speed, resulting in an 

electrode density of 6511.24kgm/s2. With a desirability value of 93.9%, the design 

expert determined that this solution was the best option. In the ANN, 70% of the 

data was used for training, 15 % was used for validating and the last 15% for the 

actual test. From the results obtained a regression plot that displays the 

relationship between the input factors and the desired outcome was produced 

with R2 values of 0.84831. The ANN is selected as the better predictive model 

over the RSM because the ANN output fits closer to the experimental than that of 

RSM. Thus, the approaches effectively optimized and predicted the electrode 

density. 
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1. INTRODUCTION 

High corrosion resistance, weldability, long 

service life, formability, and non-magnetic 

characteristics are all attributes of the alloy 

known as stainless steel (SS) (Sunilkumar, 

D. et. al., 2020). Aerospace, automotive, 

construction, rolling, chemical processing, 

household products, and other industries use 

stainless steel extensively (Hall, J. N. and 

Fekete, J. R., 2017) (Bhadeshia, H. and 

Honeycombe, R., 2017). Thin portions of 

mild and stainless steel are frequently joined 

using the Gas Tungsten Arc Welding 

(GTAW) or Tungsten Inert Gas (TIG) 

procedures (Dipali P. et. al., 2021). Figure 
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1A illustrates a TIG welding process while Figure 1B  

 

              

Figure 1: (A) TIG welding process (Aumm graphixphoto) (B) TIG electrodes (Pongsak14)

A series of research papers analyzed the 

behavior of TIG processes have been studied 

for several decades. The earliest 

investigations looked at the haphazard 

relationships between the input factors, the 

electrode fusion rate, and the metal 

(Meneses, L. et. al., 2019). It is well known 

among TIG welders that spatter reduces the 

quality of welded joints, thus attracting 

further finishing processes on the product 

and additional costs for its removal. Sathish 

T. (2021) reported that tungsten inert gas 

welding was used to join wrought aluminum 

AA8006 for industrial purposes. The 

regression equation was then solved using 

the multi-objective algorithm while the 

mechanical and microstructure parameters 

were being examined. Sarkar P. and Kakoty 

S. (2021) analyzed the surface toughness, 

standing tensile strength, and impact loading 

while taking into account the welding speed, 

base current, and peak current as process 

parameters. According to Azadi M. and 

Kolahan F. (2020), the generated model is 

useful for modeling and optimizing A-TIG 

welding. To optimize the parameters, an 

orthogonal array Taguchi, a regression 

model, and a variance analysis were used. 

The flus have been activated using SiO2 

nanoparticles. Ragavendran M. et. al. (2017) 

looked into how using a hybrid laser and 

TIG welding process affected the response. 

The welding procedure was carried out 

using austenitic stainless steel 316LN. Using 

response surface approach, the effect had 

been examined for weld bead width, weld 

cross-sectional area, and penetration depth. 

The measured and anticipated values show a 

strong agreement as well. Using the 

response surface methodology (RSM), 

Vidyarthy R. (2018) examined the 

connection between the reaction and the A-

TIG welding process parameters, such as 

welding current, welding speed, and flux 

coating density. It was found that the 

welding current has the biggest impact on 

the weld bead shape. In the course of the A-

TIG welding process, Vasantharaja P. and 

Vasudevan M. (2018) used response surface 

approach to identify the ideal values. The 

best values for the welding parameters were 

found using numerical and graphical 

optimization. Pamnani R. (2017) conducted 

tests on DMR249A steel used in ships and 

aircraft. The RSM methodology and trial 

design made it possible for this strategy to 

obtain a good depth of penetration. Singh P. 

(2017) investigated how the vibratory 

welding method influenced mild steel 

plating used to create butt welds. In this 
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work, the microstructure and micro hardness 

were also investigated. It was discovered 

that the vibratory condition increased the 

hardness value relative to the traditional 

procedure.  Magudeeswaran G. (2014) 

described how A-TIG was used to determine 

the ideal aspect ratio for DSS joints. The 

ANOVA and pooled ANOVA procedures 

were used to determine the important 

experimental parameters. The researchers 

came to the conclusion that the ANOVA 

analysis revealed that the optimized 

parameters were within the allowable range. 

Sivachidambaram P. and Balachandar K. 

(2015) looked into an approach to welding 

aluminum and aluminum composite 

employing optimum pulsed current TIG 

settings, welding regression equations, and 

also built an empirical model to determine 

the key parameters. In this work, the effects 

of the electrode density parameters were 

determined while voltage, welding current 

and gas flow rate were taken into 

consideration as process parameters. The 

design of experiment (DOE) methodology 

was used to create the orthogonal array for 

the central composite design, which the 

RSM and ANN then examined. 

 2.0 METHODS 

2.1 Experimental setup 

For the experiments, 100 mild steel coupons 

with measurements of 80 x 40 x 10 (mm) 

were utilized. The experiment was 

conducted 20 times, with 5 specimens per 

run. The plates' edges were machined and 

bevelled before being welded using tungsten 

inert gas welding equipment.  Mild steel 

plates of 10 mm thickness were TIG welded 

using different ranges of current, voltage, 

wire diameter and wire feed rate. In this 

investigation, 100% pure Argon gas was 

employed as a shielding gas throughout the 

welding process to protect the weld 

specimen from air interaction. The silicon 

carbide abrasive sheets were ground using a 

rotating disk at five stages of 80, 300, 600, 

1200, and 4000 grits on all welded samples 

after they had been cut perpendicular to the 

welding direction and mounted in resin 

(Mecatech 334). Following polishing with 3 

m (microns) and 1 m (microns) diamond 

pastes, the specimens were etched by 

immersing them in sodium hydroxide 

solution (1g NaOH + 100 ml H2O) as an 

etchant for 45 seconds. Using an electronic 

microscope, model number KEYNCE VHX-

500F, the samples' macrostructure and 

microstructure were investigated.  Mild steel 

plate with a 10 mm thickness was used for 

the weld sample construction. The plate was 

powered hacksaw cut to size. With the 

seams welded and the edges ground and 

polished with emery paper, the electrode 

density as a response was then measured and 

recorded. To take consecutive shots of the 

spatter images from a distance of 0.7 meters, 

a mobile phone camera was installed and 

placed above and to the side of the welding 

region. Spatter shots taken in both the 

vertical and horizontal directions were 

combined to create two-dimensional spatter 

images. Spatter distribution is assessed using 

shots taken vertically, whereas spatter 

counting is carried out using photos taken 

horizontally. At 240 fps, scatter pictures 

were captured. Due to the welding arc's 

brilliance, the spatter photos that were 

collected were primarily distorted. As a 

result, welding spatter was only tracked 

using an optical filter. A neutral-density 

(ND) optical filter was installed on the 

digital lens, which results in sharper images 

by evenly dispersing incident light across 

the wavelength spectrum. 

  2.2 Design of experiment 

A design of experiment is a scientific 

approach to organizing and carrying out an 

experiment that will reveal a cause-and-
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effect relationship between variables. It can 

also be a methodical approach to altering in 

order to measure the cause-and-effect 

relationship between the process inputs and 

outputs as well as the random variability of 

the process while requiring the least number 

of runs.   Experimentation is a very vital 

aspect of scientific study, which can be 

developed using computer software’s like 

design expert and Minitab. For better 

polynomial approximation an experimental 

design is used to collect the data.  There are 

different types of experimental designs 

which includes central composite 

circumscribed, central composite face 

centred, full factorial, and Latin hyper cube 

designs. 

 

 

 

 

 

2.3 Identification of range of input 

parameters  

Welding current, welding voltage, wire 

diameter, and wire feed speed are the main 

factors that were taken into account in this 

study. Table 1 displays the variety of 

process variables gleaned from the literature. 
 

2.4. Scanning electron microscope (SEM) 

In order to identify any phase changes at the 

cleaned surfaces, SEM was utilized to 

examine the laser-cleaned surfaces in 

comparison with a reference surface.   As 

seen in Figure 1, a Hitachi High 

Technologies S-3400N Type I, 0.1-30 kV 

scanning electron microscope was 

employed. 

 

            

Table 1: Process parameters and their levels 

Factors Unit Symbol Low (-1) High (+1) 

Welding Current Ampere I 180 240 

Welding Voltage Volts V 18 24 

Wire diameter Mn WD 1.2 3.0 

Wire feed speed Mm/min WFS 10 50 
 

 

Figure 2: Hitachi High Technologies S-3400N SEM (Hitachi S-3400N) 
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2.5 Method of Data Collection 

Using design expert software, the center 

composite design matrix was created, 

yielding 20 experimental runs. The 

experimental matrix is made up of the input 

and output parameters, and the responses 

noted for the weld samples were utilized as 

the data. The data matrix is determined by 

the number of input parameters, which is 

provided by the equation 2n + 2n + k, where 

k is the quantity of center points, 2n is the 

quantity of axial points, and 2n is the 

quantity of factorial points. The data 

obtained were analyzed using the following 

techniques. 

 

 

2.6 Method of Data Analysis 

2.6.1 Response Surface Methodology (RSM) 

RSM is one of the optimization 

methodologies that is currently in 

widespread use to describe the performance 

of the welding process and choose the 

appropriate response.  RSM is a collection 

of mathematical and statistical methods that 

are useful for modeling and forecasting the 

interest response, which is influenced by a 

number of input variables, in order to 

optimize the response. The optimal value for 

a given function in terms of the process 

input parameters could either be minimal or 

maximum.  

       

 

         Table 2: Analysis of Variance Components 

Variation 

Source 

Degree of 

Freedom Df 

Sum of Squares 

SS 

Mean Square 

MS 

Fisher Ratio 

F-value 

Error of 

residuals 

n-2 
  

 

Regression 1 
   

Lack of fit C -2 
   

Total n-1 
 

- - 

  

2.6.2 Artificial Neural Network 

A massively parallel distributed processor 

called a neural network that is naturally 

inclined to store experimental information 

and make it accessible for application. It is 

used as a data mining tool to identify 

unknown patterns in datasets. In two ways, 

it resembles the brain. R-input to an 

elementary neuron is weighted with the 

appropriate w. The input to the transfer 

function f is made up of the bias added to 

the weighted inputs. In order to generate 

their output, neurons can use any 

differentiable transfer function f. The 

transfer function logsig of a log-sigmoid is 

frequently used in multilayer networks. The 

function logsig generates outputs between 0 

and 1 as the neuron's net input changes from 

a negative value to a positive infinity. The 

2
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tan-sigmoid transfer function, or tansig, in 

multilayer networks provides an alternative. 

Sigmoid output neurons are widely used, 

although linear output neurons are when it 

comes to pattern recognition problems. The 

artificial neural network is a data mining 

tool, which uses the theory of the human 

brain and the neurone communication 

technique that has been programmed into a 

software. It is a predictive tool analyses a 

data by the following process: training, 

learning validating and testing. The neural 

network flow diagram is presented in figure 

2. 

Figure 2: Neural network flow diagram 
 

The link between the input, hidden neurons, 

and output is built using the optimal number 

of hidden neurons, as shown by the simple 

neural network diagram in figure 3.   

                                          

 

Figure 3: Simple Neural Network Diagram 

 

X1, X2 and X3 are the signals entering the 

nodes which can also be taken as the sample 

parameters, these signals enter the node. 

W1, W2, and W3 are the matching weights 

of the signals, and 'b' is referred to as bias, 

which is connected to the storage of 

information. Y is the Target or Output. 

Weights and bias are the two ways that 

information is stored in neural networks. 

 

 

 

 

 

3. RESULTS  

Both the response surface methodology 

(RSM) and the artificial neural network 

(ANN) were utilized in this investigation to 

analyze the data gathered from the trials 

conducted. 

3.1 Modeling and Optimization using 

Response Surface Methodology (RSM) 

The second order effects of non-linear 

relationships are included in the Response 

Surface Model, a modification on simple 

linear regression. The optimization model's 

goal is to increase the electrode density. 

Identifying the optimal value for each input 

variable (current (Amp), voltage (V) wire 
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diameter and wire feed speed) is the 

process's final answer that will give us the 

best weld electrode density. For the purpose 

of producing experimental data for 

optimization: 

(i) An experiment's statistical design was 

carried out utilizing the central composite 

design method (CCD). A statistical tool was 

used to carry out the design and 

optimization. It was decided to use Design 

Expert 7.01.  

(ii) 30 experimental runs were created used 

a matrix for experimental design with 

sixteen factorial points (2n), eight axial 

points (2n), and six center points (k).  

The sequential model sum of squares for the 

electrode density response was calculated to 

confirm that the quadratic model was 

appropriate for evaluating the experimental 

data, and the results are shown in Table 3. 

    

Table  3: Sequential model sum of square for  electrode density 

Source Sum of  Mean F p-value  

Squares df Square Value Prob > F  

Mean vs Total 1.325E+009 1 1.325E+009    

Linear vs Mean 1.026E+005 4 25639.42 6.80 0.0008  

2FI vs Linear 34197.42 6 5699.57 1.80 0.1519  

Quadratic vs 2FI 54348.67 4 13587.17 36.00 < 0.0001 Suggested 

Cubic vs 

Quadratic 

4561.04 8 570.13 3.63 0.0533 Aliased 

Residual 1099.95 7 157.14    

Total 1.325E+009 30 4.416E+007    
 

The sequential model sum of squares table 

illustrates how the model fit becomes better 

as more terms are added. As the best fit, the 

highest order polynomial with significant 

additional terms and no aliasing was chosen 

based on the estimated sequential model 

sum of squares.  

The lack of fit test was calculated for each 

response to determine how well the 

quadratic model accounts for the underlying 

variation in the experimental data. 

Prediction cannot be made using a model 

with a considerable lack of fit. Table 4 

displays the findings of the computed lack 

of fit for the electrode density factor. 

The quadratic model's applicability was 

determined by the goodness of fit statistics 

presented in table 5 based on its ability to 

maximize electrode density. 

 

Any model's acceptability must first be 

verified by the results of an acceptable 

statistical analysis. Figures 4 and 5 display 

the residuals probability plot and the 

residuals against expected for electrode 

density, respectively, to diagnose the 

statistical features of the response surface 

model. 

For electrode density, which is depicted in 

figure 8, the projected values are displayed 

against the actual values in order to identify 

a value or set of values that the model has 

difficulty identifying. Figures 6 and 7 show 

the generated cook's distance for the 

electrode density. 

 

Figures 8 and 9 provide 3D surface plots for 

the electrode density to examine the effects 

of many input factors. 
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Table  4: Lack of fit test for  electrode density 
Source Sum of  Mean F p-value  

Squares Df Square Value Prob > F  

Linear 93601.38 20 4680.07 38.63 0.0004  

2FI 59403.96 14 4243.14 35.03 0.0005  

Quadratic 5055.29 10 505.53 4.17 0.0642 Suggested 

Cubic 494.25 2 247.13 2.04 0.2250 Aliased 

Pure Error 605.70 5 121.14    

 

Table 5: Goodness of fit statistics for electrode density 
Std. Dev. 19.43 R-Squared 0.9712 

Mean 6644.62 Adj R-Squared 0.9444 

C.V. % 0.29 Pred R-Squared 0.8476 

PRESS 29990.67 Adeq Precision 28.014 

 

 

 

Figure 4: probability plot of residuals for electrode density         

 

 

Figure 5: plot of residuals against predicted for electrode density 
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3.2 Modeling and Optimization using the 

Artificial Neural Network (ANN) 

The input and output interphase for the 

electrode density factor response is a 4 x 30 

matrix, such that the input parameters 

(current, voltage wire diameter and wire 

feed speed) and targetted response  

 

(electrode density) were selected as were 

inputed into ANN.  It is recommended that a 

set of data be set aside for validation and 

testing.  Data obtained from this research 

were divided into three parts with 70% of 

the experimental sample data used for 

training, 15% used for validation, whereas 

the final 15% was tested for the neural 

network model. This resulted in 20 samples 

Figure 7: The generated cook’s distance for the 

electrode density 

Figure 6: Plot of Predicted Vs Actual for 

electrode density  

Figure 8: Effect of current and voltage on electrode 

density 

Figure 9: Effect of wire feed speed and current on 

electrode density 
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of the entire population used for training while 5 samples each was employed for 

validation and testing. Figure 10 depicts the 

network architecture of the ANN, which 

comprises four inputs, ten neurons in the 

hidden layer, and one neuron in the output 

layer. 

 

Figure 10. Artificial neural network architecture for predicting the electrode density. 
 

The Training interphase: from the result 

summary, it was noticed that the training of 

the network model provided a correlation 

having 90.6% with a mean square error of 

8.98E-3. The validation of the network 

model produced a correlation of 91.3% with 

a mean square error of 3.57E-2. The 

network model's testing yielded an 80.9% 

correlation with a mean square error of 

1.96E-2. Levenberg-Marquardt was selected 

as the training algorithm, Mean Squared 

Error as the performance algorithm, and the 

data division strategy was set to random 

(dividerand). The performance plot, plotted 

to check for network learning is shown in 

figure 11, while the gradient function plot to 

show how much errors produced during 

prediction is shown in figure 12. 

    

 

 

 

Figure 11: Performance curve for trained network to 

predicting electrode density responses 

Figure 12: Neural network gradient plot for 

predicting electrode density responses 



*Corresponding author, e-mail:author@fupre.edu.ng 
DIO 
©Scientific Information, Documentation and Publishing Office at FUPRE Journal 

 

In figure 13, the best prediction for the 

electrode density responses was achieved at 

epoch 3, although, a total of 8 epochs were 

used in the iteration process. A regression 

plot is produced to check for the coefficient 

of correlation and the closeness between the 

network output and the experimental data. 

Figure 13 displays the regression plot 

illustrating the training, validation, and 

testing of the network output. 

 

Figure 13: Regression plot of training, validation and testing for electrode density responses 
 

With a correlation coefficient (R) of more 

than 80%, Figure 13 shows the training, 

validation, and testing plot and denotes a 

reliable prediction for the electrode density. 

The dotted diagonal line on each plot 

indicates the line of best fit which indicate a 

perfect prediction and a correlation of 1.  

 

3.3 Comparison of the Experimental values 

and ANN predicted values 

A time series plot can help to appreciate the 

graphical difference between the 

experimental result and the network output 

which is shown in figure 14 while a fitted 

plot for the artificial network output was 

done to ilustrate the correlation between the 

experimental and the model developed, this 

is shown in figure 15 
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. 
 

 

Equation (1) provides the regression 

equation for the electrode density 

response between the experimental and 

expected values. 

EXP = - 0.04901 + 1.109 ANN 

     

    (1) 

 

The model summary statistics for the 

network shows the strength of the network 

output.  The result is shown in table 7. 

Table 7: ANN Model Summary for 

electrode density 
S R-sq R-sq(adj) 

0.125650 71.96% 70.96% 

     

     1 

The analysis of variance for the network 

output to check for the significance of the 

network is shown in table 8. 

Table 8: ANN Analysis of Variance for 

weld strength factor 
Source DF SS MS F P 

Regression 1 1.13461 1.13461 71.87 0.000 

Error 28 0.44206 0.01579   

Total 29 1.57667    

3.4 Discussion 

The two expert methods, namely, Response 

Surface methodology (RSM), and the 

artificial neural network (ANN) have been 

employed to explain the existing link 

between welding process input parameters 

such as current, voltage, wire diameter, and 

wire feed speed in correspondence with the 

electrode density. The RSM and the ANN 

methods were utilized in predicting and 

optimising the weld response. The RSM 

results showed the second order polynomial 

model best explains the behavior of the 

experimental data. The similarities of the 

process parameters and the electrode density 

is quadratic, and shows a strong correlation 

between the voltage, wire diameter and 

electrode density with a p value  < 0.00001. 

The variance inflation factor (VIF) was 1.00 

which shows that the model is significant 

because a (VIF) greater than 10.00 is a cause 

for alarm. The goodness of fit statistics 

provided an R2 of 0.9712 for the coefficient 

of determination, which may be used to 

Figure 14: A time series plot of experimental 

values and network output for electrode 

density 

Figure 15: Fitted line plot for electrode 

density 
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verify the importance and suitability of the 

model based on its capacity to forecast 

electrode density.   The noise to signal ratio 

for the model is 28.014, which is higher than 

4 and suggests a sufficient signal.  

Numerical optimization was eventually 

achieved.  With a desirability value of 0.939, 

Design Expert 7.01 software chose this 

solution as the best one.  The artificial 

neural networks were also used to predict 

the electrode density. The input data are 

randomly divided into three sets. 70% are 

used to train the network, 15% are used to 

validate the network performance and 15% 

are used for the test.  For training, the 

Levenberg Marquardt algorithm was 

utilized. For the training interphase the 

network provided a correlation value of 

90.5% with a mean square error of 8.97e-3. 

The validation of the network model 

produced a correlation value of 91.3% with 

a mean square error of 3.574e-2.  The testing 

of the network model produced a correlation 

of 80.9% with mean square error 1.963e-5. 

The performance plot and the correlation 

plot showed that the network learnt 

accurately and can be used to predict the 

target responses. 

4. CONCLUSION 

The strength and quality of a weld are 

determined by minimizing faults and 

enhancing responses that improve weld 

quality, the more electrodes in a weld 

structure, the better. In this study, a key 

output parameter was predicted and 

optimized using the response surface 

methodology (RSM) and the artificial neural 

network (ANN) model. From the results 

obtained, it is seen that (i) the ANOVA 

result showed that the lower the current and 

wire diameter the higher the electrode 

density of the weld and (ii) the optimal 

solution of the RSM model is preferred as it 

is able to predict maximized electrode 

density. Hence, the response surface 

methodology provided better optimal 

solution. The application of expert systems, 

such as artificial neural network models and 

response surface technique, increased the 

quality of tungsten inert gas welding.  This 

study optimized electrode density as a 

welding response, thus, the optimal solution 

will help to produce welds with better 

strength, reliability and accuracy by testing 

and validating the models produced.  
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