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ARTICLE INFO 

 

ABSTRACT 

The study presents, mild steel plate, cut with dimensions of 60 mm x 40 mm, then 

welded with 100% argon gas by the TIG welding using design of experiment, 

Response Surface Methodology (RSM) and Artificial Neural Network 

optimization techniques.  Welding current, gas flow rate, and voltage, have been 

selected as the process parameters during the TIG welding process. The effects of 

these process parameters on the weld strength factor were identified using 

analytical and computational intelligence techniques. The design of experiment, 

and Artificial Neural Networ optimization techniques were used to optimize the 

effect on Weld Strength Factor of the welded joints. An orthogonal array of the 

central composite design was prepared by the design of experiment (DOE) 

methodology in which experiments were performed duly as per this orthogonal 

array obtained. The 210.00A, 22.66 V, and 20.00 gas flow rate optimum setting of 

input parameters provides the better results for the weld strength factor. This 

solution was selected by design expert as the optimal solution having a 

desirability value of 0.880. The study reveals the successful use of artificial neural 

networks in predicting the weld strength for tungsten inert gas welding of mild 

steel plates.  The mean square error was used to measure the performance of the 

network in each run. The mean square performance index for the network is a 

quadratic function. The input data are randomly divided into three sets. 70% are 

used to train the network, 15% are used to validate the network performance 

and 15% are used for the test. The validation of the network model produced a 

correlation value of 94.0% with a mean square error of 1.040E-4. the testing of 

the network model produced a correlation of 97.7% with mean square error 

1.003E-5. The performance plot showed that the model developed was learning, 

which is expected of a very good network. The artificial network model produced 

predicted values for the weld strength of which the predicted values and the 

experimental values of the responses, closely fit and are in reasonable agreement 

with a high coefficient of correlation.  
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1. INTRODUCTION 

Welding is the process of joining two metals 

by fusing the base metal and by adding a 

filler material over the surface of molten 

metal to form a strong bonding on metals. In 

tungsten arc welding the tungsten electrode 

with constant weld power supply is used to 

generate electric arc between the electrode 

and the workpiece which create resultant 

heat to form the weld. Welding is an 

efficient and economic method for 

permanent joining of metals (Naik and 

Reddy, 2018). Currently, TIG welding is an 

effective welding process to manufacture 

good quality structural components with 

great industrial potential. It is an arc welding 

process in which coalescence of material is 

accomplished by the application of heat 

generated by an electric arc struck between 

the non-consumable tungsten electrode and 

workpiece. During welding, the faying 

surface of the material is melted and 

solidified, and the weld pool is protected 

from atmospheric contamination by an inert 

gas purging out from the TIG torch 

(Kamlesh et al., 2022). TIG welding is the 

most common operation use for joining of 

two similar or dissimilar metals with heating 

or applying the pressure by using the filler 

material. TIG welding technique is used in 

several industries like automobile, 

aerospace, marine, etc. due to its quick and 

precise process (Himanshu et al., 2019). 

Tungsten Inert Gas (TIG) or Gas Tungsten 

Arc Welding (GTAW) process is 

extensively used for joining thin sections of 

stainless steel. However, it is not useful in 

joining thick sections in a single pass (Dipali 

et al., 2021).  In tungsten inert gas arc 

welding the arc is produced by the electric 

supply which forms between the tungsten 

electrode and the base metal. Though other 

welding process the electrode melts to form 

weld but in gas arc welding point of base 

metal where weld is carried out is 

transformed in to weld pool by the arc.  The 

filler material is manually added for TIG 

welding, and the molten metal is allowed to 

cool (Naik and reddy, 2018). Filler is used 

when welding together metals with high 

melting points to prevent cracking. In 

addition, highly corrosive resistant alloys 

when welded to thicker wall material require 

a filler wire. Finally, when dissimilar alloys 

are being joined a filler wire is needed. 

Metals with a thickness of more than 6 mm 

require the use of filler wire during welding 

with TIG welding process. Figure 1 shows a 

schematic diagram of the TIG welding 

process incorporated with the filler rod. 

 

Figure 1: Schematic diagram of tungsten 

inert gas (TIG) welding incorporated with a 

filler rod. (Kesse et al., 2020) 

Under the correct welding conditions, 

tungsten electrodes are not consumed during 

welding (Sharda et al., 2020). However, its 
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process efficiency is low and penetration 

capability is relatively weak because of its 

low arc current used. In order to improve the 

efficiency of heat source, researchers 

proposed to modify the welding torch and 

introduce heavier welding current to 

increase the arc pressure and enhance the 

penetration capability (Chunyang et al., 

2020). Gas is pumped through the nozzle to 

protect the weld pool against oxidation. The 

electrode is only intended to maintain the 

heat supplying arc. The extra metal required 

for the weld pool is provided by a 

consumable filler rod fed by the operator 

(Natrayan et al., 2021). The inert gases are 

widely used to cover the area welded from 

the atmosphere (helium, argon, or a 

combination of helium and argon). For 

proper welding, filler metal can also be fed 

manually (Kumar et al., 2022). TIG welding 

can be used in various positions of parts and 

is very easy to operate in different situations 

(Zhang et al., 2019). 

 

1. METHODOLOGY 

2.1 Design of Experiment 

Design of Experiments (DOE) is a 

powerful analysis tool for modelling and 

analysing the influence of multiple control 

factors on the performance output. DOE 

refers to planning, designing, and analysing 

an experiment so that valid and objective 

conclusions can be drawn effectively and 

efficiently. If a certain quality feature of a 

product, the response, is being affected by 

many variables, the best strategy is then to 

design an experiment in order to achieve 

valid, reliable and sound conclusions in an 

effective, efficient and economical manner. 

It is important to know that some factors 

may have strong effects on the response, 

others may have moderate effects, and 

some have no effects at all. In 

manufacturing, experiments are conducted 

to improve the understanding and 

knowledge of different engineering 

processes with the aim of producing high 

quality products.  To achieve this an 

appropriate combination of the 

experimental parameters is required. One of 

the conventional common approaches 

utilized by many engineers in 

manufacturing companies is one-variable-

at-a-time (OVAT), where the engineer 

varies one variable at a time keeping all 

other variables involved in the experiment 

fixed. This approach required large 

resources to obtain a limited amount of 

information about the process. OVAT 

experiments are often unreliable, time 

consuming, may not yield the optimal 

condition and do not address the interaction 

effect between the process variables. 

Methods that have statistical bases can 

replace OVAT experimental approach.  

2.2 Central Composite Design (CCD)  

The most popular Response Surface 

Methodology design is CCD. CCD has 

three groups of design points: (a) two-level 

factorial or fractional factorial design 

points, (b) axial points (sometimes called 

star points) and (c) centre points. CCDs are 

designed to estimate the coefficients of a 

quadratic model. All point descriptions will 

be in terms of coded values of the factors.  
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 2.3 Factors Required for Design of 

Experiment 

   For experimentation there some key 

factors that must be considered so as to 

achieve reliable and accurate experimental 

results these are the process parameters. 

Process parameters are classified into the 

input parameters and the output parameters. 

The input parameters considered in this 

research study is shown in table 1 

 

2.4 Recording of Responses 

Mild steel plate of thickness 10 mm was 

selected as material used for the experiment. 

The mild steel plate was cut with dimension 

of 60 mm x 40 mm with the help of power 

hacksaw and grinded at the edge to 

smoothen the surfaces to be joined. The 

surfaces of the coupon were polished with 

emery paper, thereafter the mild steel plates 

were fixed on the worktable with flexible 

clamp to weld the joints of the specimen. A 

TIG welding process was used with 

Alternate Current (AC) to perform the 

experiments as it concentrates the heat in the 

welding area, using 100% argon gas as the 

shielding gas, for each experimental runs 5 

specimen was used, and the average of the 5 

experimental readings were recorded for the 

20 runs. 

 

2.5 Response Surface Methodology 

RSM is a set of mathematical and statistical 

techniques that are useful for modelling and 

predicting the response of interest affected 

by several input variables with the aim of 

optimizing this response. RSM are 

extensively used in situations where there 

are many input factors that may influence 

one or more response variables. Response 

surface methodology (RSM) is a 

combination of mathematical and statistical 

models for analysing processes in which a 

target response is influenced by several 

variables and the main objective is to 

optimize this response. It also has an 

important application in the design, 

development, and formulation of new 

products as well as in the improvement of 

existing product designs. The basic 

components of response surface 

methodology include experimental design, 

regression analysis and optimization 

algorithms which are used to investigate the 

empirical relationship. Response Surface 

Methods (RSM) are used to develop 

empirical model, commonly called response 

surface, for the response of a process in 

terms of the relevant controllable factors. 

RSM determines the operating conditions 

that produce the optimum response. 

Response Surface Methodology allows you 

to specify and fit a model up to the second 

order, RSM fits a model and provides the 

ANOVA and the 'Lack of Fit' test separately 

when there is more than one response. 

Contour and Surface plots of each response 

for pairs of factors are also produced. The 

aim of the response surface is to help 

understand the topography of the surface 

plot using simple maximum or minimum, 

saddles and ridges 3D diagrams and to find 

the region with the optimum response using 

contour plots.  

2.6   Artificial Neural Networks  
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Neural network is data mining tool for 

finding unknown patterns in databases, a 

neural network is a massively parallel 

distributed processor that has a natural 

propensity for storing experimental 

knowledge and making it available for use. 

It resembles the brain in two 

respects. Knowledge is acquired by the 

network through a learning 

process, Interneuron connection strengths 

known as synaptic weights are used to store 

the knowledge. An elementary neuron with 

R input is weighted with an appropriate w. 

The sum of the weighted inputs and the bias 

forms the input to the transfer function f. 

Neurons can use any differentiable transfer 

function f to generate their output. 

Multilayer networks often use the log-

sigmoid transfer function logsig. The 

function logsig generates outputs between 0 

and 1 as the neuron's net input goes from 

negative to positive infinity. Alternatively, 

multilayer networks can use the tan-sigmoid 

transfer function tansig. Sigmoid output 

neurons are often used for pattern 

recognition problems, while linear output 

neurons are used for function fitting 

problems.  

Table 1: input parameters 

Paramet

ers 

Unit Symb

ol 

Coded 

valueLo

w(-1) 

Cod

ed 

valu

e 

High 

(+1) 

Current Amp A 180 240 

Gas flow 

rate 

Lit/m

in 

F 16 22 

Voltage Volt V 18 24 

 

2. RESULTS AND DISCUSSION 

In this study, two expert methods were used 

to analyze the data collected from the 

experiments performed which are the 

response surface methodology (RSM) and 

the artificial neural network (ANN). 

3.1 Modelling and Optimization using 

Response Surface Methodology (RSM) 

Response Surface Model is a variation of the 

simple linear regression, with the 

incorporation of the second order effects of 

non-linear relationships. It is a popular 

optimization technique to determine the best 

possible combinations of variables to 

determine a specific response to a 

phenomenon. RSM is particularly useful to 

understand the relationship between multiple 

predictor variables with multiple predicted 

responses. 

The target of the optimization model was to: 

i. Maximize weld strength factor.  

The final solution of the optimization 

process was determining the 

optimum value of each input variable 

namely: current (Amp), voltage (V) 

and gas flow rate (lit/min) that will 

give us the best weld output results. 

To generate the experimental data for the 

optimization process; 

i. Statistical design of experiment 

(DoE) using the central composite 

design method (CCD) was done. The 

design and optimization were 

executed with the aid of statistical 

tool. For this particular problem, 

Design Expert 7.01 was employed.  
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ii. An experimental design matrix 

having six (6) centre points(k), six 

(6) axial points(2n) and eight (8) 

factorial points(2
n
) resulting to 20 

experimental runs was generated.  

To validate the suitability of the quadratic 

model in analysing the experimental data, 

the sequential model sum of squares was 

calculated for the  weld strength factor 

response as presented in Table 2 

 

The sequential model sum of squares table 

shows the accumulating improvement in the 

model fit as terms are added. Based on the 

calculated sequential model sum of square, 

the highest order polynomial where the 

additional terms are significant and the 

model is not aliased was selected as the best 

fit. To test how well the quadratic model can 

explain the underlying variation associated 

with the experimental data, the lack of fit 

test was estimated for each of the responses. 

Model with significant lack of fit cannot be 

employed for prediction. Results of the 

computed lack of fit for the  weld strength  

factor  is presented in table  3 

 

 

Table  2: Sequential model sum of square for weld strength factor 

Source Sum of  Mean F p-value Remark 

Squares df Square Value Prob > F 

Mean vs Total 13.31 1 13.31    

Linear vs Mean 1.337E-003 3 4.457E-004 8.51 0.0015  

2FI vs Linear 2.225E-004 3 7.415E-005 1.58 0.2458  

Quadratic vs 2FI 5.298E-004 3 1.766E-004 47.29 < 0.0001 Suggested 

Cubic vs 

Quadratic 

1.693E-005 4 4.231E-006 1.27 0.3922 Aliased 

Residual 1.669E-005 5 3.337E-006    

 

                   Table  3: Lack of fit test for  weld strength factor 

Source Sum of  Mean F p-value Remark 

Squares df Square Value Prob > F 

Linear 7.820E-004 11 7.109E-005 73.44 0.0004  

2FI 5.596E-004 8 6.994E-005 72.26 0.0005  

Quadratic 2.974E-005 5 5.948E-006 6.14 0.0515 Suggested 

Cubic 1.281E-005 1 1.281E-005 13.24 0.0220 Aliased 

Pure Error 3.872E-006 4 9.680E-007    

 

The model statistics computed for weld 

quality index response based on the model 

sources is presented in table 4. 

To validate the adequacy of the quadratic 

model based on its ability to maximize the 

weld strength factor the goodness of fit 

statistics presented in table 4. 

 

Table 4:Goodness of fit statistics for weld 

strength factor 

Std. 1.933E R- 0.984
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Dev. -003 Squared 2 

Mean 0.84 Adj R-

Squared 

0.968

3 

C.V. 

% 

0.23 Pred R-

Squared 

0.886

9 

PRES

S 

2.402E

-004 

Adeq 

Precisio

n 

29.15

7 

 

To accept any model, its satisfactoriness 

must first be checked by an appropriate 

statistical analysis output.  

In order to detect a value or group of values 

that are not easily detected by the model, the 

predicted values are plotted against the 

actual values, for strength factor which is 

shown in the figure 2. To determine the 

presence of a possible outlier in the 

experimental data, the cook’s distance plot 

was generated for the different responses. 

The cook’s distance is a measure of how 

much the regression would change if the 

outlier were omitted from the analysis. A 

point that has a very high distance value 

relative to the other points may be an outlier 

and should be investigated. The generated 

cook’s distance for the weld strength factor 

is presented in Figures 3.

 

       
  

 

 

To study the effects of combine input variables on the weld weld strength factor, 3D surfaces 

plots presented in Figure 4 and Figure 5. 

 

Figure 2: Plot of Predicted Vs Actual for weld 

strength factor     

Figure 3:  cook’s distance  plot for weld 

strength factor 
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3.2 Artificial Neural Network Model 

The artificial neural network is a data 

mining tool that can be used for prediction 

without having prior knowledge of how the 

data is collected. This process involves 

training, learning, testing and validation of 

the network. For Validation/Test interphase, 

it is recommended that a set of data be set 

asi4.de for validation and testing, therefore, 

that data obtained from this research were 

divided into three parts with 70% of the 

experimental sample data, used for training 

15% used for validation, while the 

remaining 15% was used to test the neural 

network model. This resulted in 20 samples 

of the entire date used for training while 5 

samples each was employed for validation 

and testing. The ANN network architecture 

has 3 input ,10 neurons in the hidden layer 

and 1 neuron in the output layer, the 

network architecture is shown in figure 7. 

 

 

Figure 7: Artificial neural network architecture for predicting weld strength factor response 

The Training interphase: from the result 

summary, it was noticed that the training of 

the network model provided a correlation 

having 99.8% with a mean square error of 

2.766E-7. The validation of the network 

model produced a correlation of 94.0% with 

Figure 5: Effect of current and voltage on weld 

strength factor 
Figure 6: Effect of current and gas flow rate on 

weld strength factor 
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a mean square error of 1.040E-4. the testing 

of the network model produced a correlation 

of 97.7% with mean square error 1.003E-5. 

Refer to Regression plot of training, 

validation, and testing for the weld strength 

factor for clearer understanding. The 

performance plot was produced to check for 

network learning and is shown in figure 8. 

The best validation performance was 

obtained at epoch 5. In MATLAB software, 

an epoch can be thought of as a completed 

iteration of the training procedure of your 

artificial neural network. Which means, 

once all the vectors in your training set have 

been used or gone through your training 

algorithm, one epoch has been attained. 

Thus, the "real-time duration" of an epoch is 

dependent on the training method used. The 

best prediction for the weld strength factor 

responses was achieved at epoch 5, 

although, a total of 5 epochs where used in 

the iteration process. The gradient function 

plot is presented in figure 9. 

This plot is used to show how much errors 

had been produced by the neural network 

model. From the plot, it was noticed that the 

prediction error made, is indicated by the 

orange line which is close to -0.0035. a 

regression plot is produced to check for the 

coefficient of correlation and the closeness 

between the network output and the 

experimental data. The regression plot 

showing the training, validation and testing 

of the network output is shown in figure 10. 

Figure 10 present the training, validation, 

and testing plot with correlation coefficient 

(R) of over 90% which signifies a robust 

prediction for the Fume Formation Rate. 

The dotted diagonal line on each plot 

indicates the line of best fit which indicate a 

perfect prediction and a correlation of 1.  

A time series plot can help to appreciate the 

graphical difference between the 

experimental result and the network output 

which is shown in figure 11. 

              

 

 

Figure 8: Performance curve for trained 

network to predicting weld strength factor 

responses 

Figure 9: Neural network gradient plot for 

predicting weld strength factor responses 
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Figure 10: regression plot of training, validation, and testing for weld strength factor responses 

 

Figure 11: A time series plot of experimental values and network output 

The regression equation for the weld 

strength factor is presented in equation 

4.2. It was noticed from the model 

summary that 0.004224 was the 

maximum noise produced by the ANN 

predictive model, showing its 

robustness.   

EXP = - 0.00313 + 1.002 ANN (1) 

                  

The model summary statistics for the 

network shows the strength of the network 

output. The result is shown in table 5 
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The analysis of variance for the network 

output to check for the significance of the 

network is shown in table 6. 

Table 5: ANN Model Summary for weld strength factor 

S R-sq R-sq(adj) 

0.0042247 84.93% 84.10% 

 

Table 6: ANN Analysis of Variance for weld strength factor 

Source DF SS MS F P 

Regression 1 0.0018110 0.0018110 101.47 0.000 

Error 18 0.0003213 0.0000178   

Total 19 0.0021323    

A fitted plot for the artificial network output was done to ilustrate the correlation between the 

experimental and the model developed,which is shown in figure 12. 

 

Figure 12: Fitted line plot for the weld strength factor. 

3.3 Discussion 

In this study, the Response Surface 

methodology and the artificial neural 

network methods were used to optimize and 

predict weld strength factor. The input 

parameters are current, voltage and gas flow 

rate, while the response is weld strength 

factor. The relationship between the process 

parameters and the weld strength is 

quadratic, and shows a strong correlation 

between the current, voltage and weld 

strength factor formed with a coefficient of 

correlation value of 0.9842. The variance 

inflation factor (VIF) was 1.00 which 

indicates that the model is significant 

because   a (VIF) greater than 10.00 is a 

cause for alarm. The ANOVA table shows 

that the model is significant and possess a 

very good fit with a P -value of < 0.0001. To 

validate the significance and adequacy of the 
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model based on its ability to optimize the 

weld strength factor, the goodness of fit 

statistics gave a Coefficient of determination 

R
2 

of 0.9842 indicating how well the model 

can predict the values of the selected 

variables that will maximize the weld 

strength factor. The model has a noise to 

signal ratio of 29.157, which is greater than 

4 is desirable and indicates an adequate 

signal. Finally, numerical optimization was 

performed to ascertain the desirability of the 

overall model. In the numerical optimization 

phase, we ask design expert to maximize the 

weld strength. From the results, it was seen 

that current (210.00amp), voltage 

(22.66volt) and gas flow rate 

(20.00litre/min) will produce weld with 

weld strength factor of 0.842156. This 

solution was selected by design expert as the 

optimal solution having a desirability value 

of 0.880. The study reveals the successful 

use of artificial neural networks in 

predicting the weld strength for tungsten 

inert gas welding of mild steel plates.  The 

mean square error was used to measure the 

performance of the network in each run. The 

mean square performance index for the 

network is a quadratic function. The input 

data are randomly divided into three sets. 

70% are used to train the network, 15% are 

used to validate the network performance 

and 15% are used for the test. For the 

training interphase the network provided a 

correlation value of 99.8% with a mean 

square error of 2.766E-7. The validation of 

the network model produced a correlation 

value of 94.0% with a mean square error of 

1.040E-4. the testing of the network model 

produced a correlation of 97.7% with mean 

square error 1.003E-5. The performance plot 

showed that the model developed was 

learning, which is expected of a very good 

network. Finally, the artificial network 

model produced predicted values for the 

weld strength of which the predicted values 

and the experimental values of the 

responses, closely fit and are in reasonable 

agreement with a high coefficient of 

correlation.  

4. CONCLUSION  

The integrity of a Weld is determined by the 

quality index and strength of the weld bead. 

The higher the strength and factor of safety 

of a weld, the higher the integrity and 

reliability of the weld.  In this study the 

response, surface method and the artificial 

neural network model were both employed 

to predict and optimize these output 

parameters mentioned in this study. From 

the results obtained the response surface 

methodology is selected as the better 

predictive model over the Artificial Neural 

Network because it has a lower mean square 

error value. A mathematical model was 

developed using the Response Surface 

Methodology and the Artificial Neural 

Networks to optimize and predict the weld 

strength factor in order to enhance service 

life and integrity of welded joints. The 

models strength, accuracy and efficiency 

have been tested and validated. Results 

obtained in this study showed that current 

has a strong influence on the weld strength 

factor that means to achieve a higher weld 

strength factor the current can be used to 

control it. The variance inflation factor has a 

value of 1 for the independent term and 1.04 

for the combined and quadratic terms of the 

input factors. The results revealed that the 
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improved second order method of gradient 

also known as Levenberg Marquardt Back 

Propagation training algorithm was the best 

learning rule and was adopted in designing 

the network architecture. It was observed 

that training algorithm had 10 hidden 

neurons in the input layer and output layer. 
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