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ABSTRACT 

Network reduction, which emphasized preserving feedback loops, identified 

potential ways to regulate dynamics in a computational model of mild cognitive 

impairment (MCI). Control sets capable of modulating MCI-associated 

attractors were identified in the full and reduced networks, though fewer in the 

latter. While the reduced size conferred a computational advantage, further 

validation is needed to determine the physiological relevance and translatability 

of proposed targets. Results demonstrate preserved dynamical features relevant 

for identifying and modulating MCI attractors despite network reduction, 

suggesting potential for data-driven intervention strategies. However, rigorous 

experimental validation and refinement through iterative experiment-modeling 

cycles will be essential for rigorously evaluating and progressively shaping in 

silico predictions into mechanism-based MCI therapies. 
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1. INTRODUCTION 

Mathematical modeling approaches that 

rely on network analysis are becoming 

increasingly essential for understanding 

complex neurological conditions like MCI 

(Zhang, et al, 2008). Boolean network 

models are particularly useful because they 

can capture high-level dynamical features 

related to cognitive function, such as 

network attractors (Choi, et al, 2012). 

However, the size of neural networks 

reconstructed from data can pose 

computational challenges in identifying 

and interpreting attractor dynamics 

(Schwab et. al., 2012). To address this, we 

propose a network reduction technique that 

effectively reduces the size of a large 

Boolean network reconstructed from the 

ISAAC aging study (Kaye, et al, 2011), 

while still preserving stable feedback loops 

and dynamical features.  

Our approach relies on the work of Veliz-

Cuba et al. (Veliz-Cuba et al, 2014). We 

find that the reduced network still captures 

similar attractor basin distributions as the 

full network, indicating preservation of 

relevant dynamics (Shreim et. al, 2010). 

We then apply the caspo_control software 

package (Videla et. al., 2017) to efficiently 

search for control targets within the 

reduced network, identifying nodes whose 

perturbation modifies MCI-associated 

attractors. Our findings demonstrate the 

potential of dynamical network reduction 

approaches as a computational method for 

modeling and regulating complex 

conditions like MCI (Strogatz, 2001). By 

preserving features relevant for phenotype 

of interest while reducing network size, we 

may create more tractable yet biologically 

faithful models to identify novel 

intervention points (Qiu et. al., 2021). 

Further experimental validation is needed 

to assess the efficacy of our proposed 

control targets for regulating MCI-related 
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attractor dynamics in vivo (Chen et. al., 

2020).  

 

2. MATERIALS AND METHODS  
 

 A Boolean network   which is of size  , 

i.e composed of   genes, is a collection of 

  Boolean local transition functions such 

that   (     
       ( )    )   

*     + where   denotes a configuration 

of  , and    denotes the state of gene   
(Kauffman, 1969)  

The state of the network at any given time 

step is determined by the Boolean 

transition functions associated with each 

variable. These transition functions can be 

represented as Boolean functions 

    *   +    *   + which defines how the 

future value of the i-th variable depends on 

the present values of the other variables. 

Mathematically, the Boolean transition 

function    can be expressed as follows:  

   (            )    
  

Here, (            ) represents the current 

state of all variables, and   
  represents the 

updated value of the i-th variable in the 

next time step. 

The transition function    can be defined 

using logical operation such as     ( ), 

  ( ), and    ( ) on the input 

variables             . These logical 

relationships capture the regulatory 

relationships between the variables and 

determine how they influence each other 

states. 

By iterating the Boolean transitions 

functions over time, the Boolean network 

evolvles from one state to another, 

exhibiting dynamic behavior and 

potentially reaching stable states or cycles. 

Analyzing the dynamics of Boolean 

networks provides insights into their 

behaviours, attractors, and regulatory 

mechanisms 

Now from the reconstructed ISAAC 

network (Dinwoodie, 2016), 

 Let;  

                                           

                                      

                                         

                
                           

                                     

                                         

                          

                 
     

   (1)  

  

Following the above assumptions, the 

boolean transition function from 

(Dinwoodie, 2016) is as follows;  

    (             )  (          
    )  

               

    (        )  (          )  

                  

        

                

              

              

         

         

              

                         

                    

              

                          
                
   (2) 

  

The wiring diagram   of a boolean 

network is a directed graph, denoted as 

    (   ), where   represents the set of 

nodes or genes, and   represents the set of 

directed edges or regulatory relationships. 

The node set   can be represented as 

  *          +, where    represents 

the  th gene or variable in the Boolean 

network. The edge set   can be 

represented as   *(     )       +, 

where (     ) represents a directed edge 

from node    to node   , indicating a 

regulatory relationship where gene    

influences gene    (Albert and Othmer, 

2003). 

The wiring diagram of the reconstructed 

network (Dinwoodie, 2016) is shown in 

Figure 1. If we give the set {0,1} the 
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structure of a finite field with standard 

addition and multiplication, i.e.,    = 

{0,1}, then the functions    :   
  →    can 

be represented as polynomials over   . 

Thus, the dynamical system    
 (         )     

    
  becomes a 

polynomial dynamical system, as 

described in (Veliz-Cuba et al, 2010). This 

polynomial representation of Boolean 

networks provides a useful tool for 

studying their dynamics.  

 

                                 
      Figure 1: Wiring Diagram for Life Kinetics and Cognitive Impairment (see (Dinwoodie, 

2016).  

 

The process of transforming Boolean 

functions into polynomials in   ,       - 
is governed by the following rules    
                                  
                 and           , 

where the operations are computed modulo 

2. By applying these rules to the network, 

we can derive the corresponding 

polynomial expressions.  

  

   (   (     )(    ))  
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   ))(  (     ))((    )(  

   ))                 

                       
                           (3) 

  

  

 The behavior of a dynamic Boolean 

network is described by the difference 

equation  (    )     ( ( )), where the 

dynamics are generated by iteration of S. 

The dynamics of S are given by the state 

space graph T, which is defined as the 

graph with vertices in   
        . The 

graph has an edge from       
  to 

      
  if and only if      ( ). The 

states       
  where the system will 

stabilize are attractors of a Boolean  

network and may include steady states 

(fixed points), where  ( )     , and 

cycles, where   ( )    for some integer 

     . Attractors in Boolean network 

modeling may represent cell types 

(Kauffman, et. al., 1969) or cellular states 

such as apoptosis, proliferation, or cell 

senescence (Huang, 1999) and 

(Shmulevich and Dougherty, 2010).  

Identifying the attractors of a system is an 

important step towards controlling the 

system and can be done using tools from 

computational algebra (Veliz-Cuba et. al., 

2010) and (Veliz-Cuba et. al., 2014).  

To find the steady states of the network, 

we need to solve the system of equations 

where       ,  for            . This 

means we want to find the roots of     , 

where         . We obtain the 

following system of equations: 

 

   (              )(       
     )      ,  

                  ,  

                            ,  

                    
            ,  

          ,  

                    ,  

              ,  

                ,  

           ,  

            ,  

              = 0,  

                           ,  

                      
                 ,  

               ,  

                         
                        
                        
     

     

 (4) 

  

Since the system is not linear, traditional 

methods like Gaussian elimination cannot 

be applied. However, we can utilize 

computational algebra to solve it by 

representing the solutions as an algebraic 

object known as an ideal of polynomials, 

denoted as   *              +. By finding 

the Grogner basis (CoxD et al 1998) of 

this ideal using mathematical software 

tools like Sagemath (SageMath. (Version 

9.2), we can obtain an equivalent but 

simpler representation. Finding the 

Grobner basis allows us to transform the 

original system into a more manageable 

form while preserving its solutions. It is a 

powerful technique for solving systems of 

polynomial equations. By computing this 

basis, we can obtain a set of polynomials 

that share the same solutions as the 

original system, but in a more convenient 

and simplified manner. The resulting 

simplified representation of the system can 

then be used to determine its solutions. 
 

            

             

            

            

              

             

               

            
     

   (5) 
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Therefore, we can solve it to obtain 

                    as a steady state 

of the network. 

 

 

2.1  Network Reduction Methodology  

The approach used for network reduction 

is an iterative method developed by 

(Veliz-Cuba et. al., 2014) implemented in 

the Pystablemotif package (Rozum et. al., 

2022), which reduces the size of the 

network while maintaining feedback loops 

that encode crucial dynamical features 

(Veliz-Cuba et al, 2014). 

 

                                        
     

       Figure 2: Wiring diagram of the reduced Life kinetics and Impairment Network 

 

 

 At each iteration, the edge removal that 

results in the smallest change in the 

number of loops is determined.  

If this edge removal maintains a minimum 

number of loops, it is performed. This 

process is repeated until the specified 

percentage of edges have been removed. 

For this study, we applied this method to 

the reconstructed ISAAC network 

(Dinwoodie, 2016). The network consists 

of 15 nodes and their interactions. We 

specified a 70% edge reduction, while 

maintaining some feedback loops. This 

resulted in a reduced network of 6 nodes 

and their edges as should in Figure 2. 

While network reduction can result in 

some loss of detail, we argue that it still 

captures the higher-level dynamical 

features crucial for the phenotype of 

interest (Dinwoodie, 2016) and 

(Saadatpour et. al., 2010). By 

preferentially maintaining loops 

hypothesized to determine functions 

(Albert et al, 2003), relevant attractors 

may still emerge.  

We acknowledge that there are potential 

limitations to this approach, but we argue 

that network reduction remains a feasible 
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and useful first-pass, computationally 

efficient approach for generating testable 

hypotheses. More realistic models can then 

incorporate the lost details (Saadatpour et. 

al., 2010). The associated boolean 

transition function of the reduced network 

is as follows;  

 

               

                

              

         

             

               (6) 

   

The polynomial for the transition function 

becomes;  

        (    )                 

   ((    )(     ))     

  ((    )(     ))          

                           

     (    )         (    )  
                        

         

            

               
     

   (7)  

  

Since its nonlinear we use the groebner 

basis earlier said to reduce and solve, 

using the mathematical software Sagemath 

(SageMath. (Version 9.2), Computer 

software, 2021), the solution to the above 

system was obtained to be;  

 

              

             

               
     

   (8) 

  

Hence the steady state of the reduced 

network is           . Hence the 

reduction technique used preserved the 

steady state.  

In this study, we have employed 

computational algebra to discover the 

steady states of complex networks. 

Specifically, we have used Boolean 

algebra to model the network dynamics 

and identify the attractors, which 

correspond to the steady states of the 

system. Additionally, we have reduced the 

size of the network using the (Veliz-Cuba 

et. al., 2014) method, which preserves the 

feedback loops that encode crucial 

dynamical features of the system.  

 There are also other software tools 

available for computing the steady states 

(attractors) of Boolean networks. One such 

tool is BoolNet, which is a R-based 

package for analyzing Boolean networks 

(Mussel et. al., 2010). Another tool is 

PyBoolNet, which is a Python package for 

analyzing and visualizing the dynamics of 

Boolean networks (Klarner et. al., 2017).  

 In summary, while we have used 

computational algebra and the (Veliz-Cuba 

et. al., 2014) method for discovering 

steady states and reducing network size, 

there are also other software tools 

available for analyzing Boolean networks. 

Researchers can choose the tool that best 

meets their needs based on factors such as 

ease of use, computational efficiency, and 

available features.  

  

2.2 Identifying Control Targets and 

Attractor Analysis in Full and 

Reduced Network  

This section focuses on identifying 

potential control targets within the full and 

reduced network models. Two 

computational tools, caspo_control (Videla 

et. al., 2017) and pystablemotif (Rozum et. 

al., 2022) , were leveraged to 

systematically analyze the attractor 

landscape and identify control targets 

(Samaga et. al., 2009). These tools can 

also calculate the network’s stable states 

(attractors) (Samaga et. al., 2009), their 

corresponding basins of attraction 

(Samaga et. al., 2009), and potential 

intervention points (control targets) that 

can switch the network from one attractor 

to another (caspo, 2017), (Rozum et. al., 

2022) and (Samaga et. al., 2009). In the 

previous section, computational algebra 
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techniques were employed to determine 

the network’s steady state expression 

profiles (Gunawardena, 2014), other 

steady states (attractors) of the full and 

reduced network where determined using 

an asynchronous update scheme in Boolnet 

(Mussel  et al ,2010). Seven (7) attractors 

were obtained, six (6) of the attractors has 

mci to be 0 (OFF), that is it prevents mci 

and the remaining one has mci = 1, which 

is the abnormal attractor as shown in 

Figure 3 and 7.

 

 

          
                     Figure 3: Attractors of the Full Life Kinetics and Impairment Network 

 

 

The state transition graph of the steady 

states (attractors) of the reduced network is 

given in Figure 5. Analysis of the steady 

states and its basins were done using 

Pyboolnet (Klarner et. al., 2017). and 

Boolnet (Mussel, et. al., 2010). The 

seventh attractor in Figure 3 is an 

important attractor of the full and reduced 

network. It has a basin of 24064 weak 

attractors, while the strong and cycle-free 

attractors have basins of 2048 states each 

for an asynchronous update scheme of the 

full network. The fourth attractor has a 

basin of 15360 weak attractors, while the 

strong and cycle-free attractors have 64 

states each. The third attractor has a basin 

containing 13344 weak attractors, with 64 

and states each that are cycle-free and 

strong respectively. The second attractor 

has a weak basin of 18432 weak attractors, 

while the cycle-free and strong basins are 

both 256 states each.  

               

 
Table 1: Basin sizes of attractors  

 

The sixth attractor has a weak basin of 

20096 weak attractors, with strong and 

cycle-free basins of 512 states each. 
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Figure 4: Basins of Attraction of the Full Network (Parameters are encoded in the order : 

{compuse, mci, meanws, numfir, numtrans, numwalks, oohhours, sleep latency, 

sleeplivroom, time asleep, ttib, waso, wscv, wsq3, wssigma})  

 

The fifth attractor has a weak basin of 

17376 weak attractors, with cycle-free and 

strong basins of 128 states each. The first 

attractor which happens to be the only 

attractor with mci = 1, has a weak basin of 

13824 weak attractors and also cycle-free 

and strong basins with the same size as the 

fifth attractor (see Figure 4). The analysis 

of the basin of attraction of the reduced 

network is given in Figure 8 that contains 

a bar chart of all attractors, their 

percentage of state space and basin type, 

the Figure 6 shows the pie chart of the 

basins of attraction for each attractors of 

the reduced network and their overall 

percentage in the state space of the strong 

basin of attraction. 

 

 
 

 Figure 5: State transition graph of the reduced Life kinetics and Impairment Network 

(Parameters are encoded in the following order: {mci, meanws, numfir, ttib, waso, wscv})  
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    Figure 6: Pie chart of the state space of the strong basin of attraction of the reduced 

network 

 

However, limitations existed in 

characterizing dynamic responses. By 

analyzing the attractor landscape in this 

section, a more comprehensive view of the 

network’s dynamic capabilities and 

limitations was obtained. Specifically, 

identifying control targets that can switch 

the network between attractors provides 

insight into potential intervention 

strategies for changing dysfunctional 

behaviors (Samaga, et al, 2009).  

 

             

        

                                         
 

                 Figure 7: Attractors of the Reduced Life Kinetics and Impairment Network 

 

By setting the control intervention 

parameter to 0, control targets 

corresponding to endogenous network 

interactions were determined. This 

revealed which existing connections in the 

network, if perturbed, could alter the 

systemic state in a desired way (Moser et. 

al., 2018). 
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Figure 8: Basins of attraction of the reduced network and their state spaces  

 

The images showing some of the control 

set for control targets (mci = 0), are given 

in Figure 9 and Figure 10 for the full and 

reduced network respectively. 

 

                            

 
Figure 9: The control set for at most two (2) drivers for the Full reconstructed life kinetics 

and impairment network with control target mci = 0  
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Other control sets of the full network of 

more than two (2) drivers includes 

{’meanws’: 0, ’waso’: 0, ’ttib’: 1}, 

{’wsq3’: 0, ’timeasleep’: 1, ’sleeplatency’: 

0}, {’wscv’: 0, ’waso’: 0, ’timeasleep’: 1}, 

{’timeasleep’: 1,’wsq3’: 0,’meanws’: 

0,’sleeplatency’: 0},{’wsq3’: 

0,’sleeplatency’: 0,’timeasleep’: 

1, ’sleeplivroom’: 1, ’ttib’: 0}. The overall 

results from this analysis provide a 

roadmap for potential therapies that 

modulate the network’s natural dynamics 

(Steuer et. al., 2006). 

                                                    

 
Figure 10: The control set for the Reduced reconstructed life kinetics and impairment 

network with control target mci = 0  

                                                    

However, it’s important to note that 

identifying control targets in the full and 

reduced network is just the first step in 

developing effective interventions for 

MCI. Further experimental studies are 

needed to validate the effectiveness and 

safety of these interventions. Overall, 

identifying control targets in the networks 

can be a promising approach for 

developing interventions for MCI. By 

targeting specific nodes within the 

network, we can potentially shift the 

system’s dynamics towards a healthier 

state, providing new avenues for treating 

this debilitating condition.  

 

  

3. RESULT AND DISCUSSION  
The target control analysis yielded several 

potential control targets in the reduced 

network whose modulation could modify 

MCI-associated attractors, demonstrating 

preservation of relevant dynamical 

features despite network reduction (see 

Materials and Methods). These findings 

corroborate research demonstrating that 

network reduction techniques can preserve 

attractor dynamics important for modeling 

phenotype of interest (Shreim et. al., 2010) 

and (Qiu et. al., 2021).  

 In the full network, 16 control sets that 

fixed mci=0 was identified, suggesting 

regulation of those nodes could modulate 

MCI states. While fewer control targets 

were found in the reduced network (4 

sets), the ability to still find interventions 

demonstrates preservation of essential 

dynamical features (Veliz-Cuba  et al, 

2014).  

 

These includes;  

 

1) ’waso’: 0: This control set indicates 

that lowering the value of the ’waso’ 

node could switch the network 

attractor from an MCI-associated state 

to a non-MCI state. ’waso’ likely 

represents time awake after sleep 

onset, a measure of sleep consolidation 

and efficiency. Decreasing ’waso’ by 

promoting more consolidated sleep 

may help prevent MCI onset by 

optimizing sleep-dependent memory 

and cognitive processes. However, 

further research is needed to determine 

whether directly reducing ’waso’ 
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levels in patients is feasible and 

effective mitigating MCI.  

2) ’ttib’: 0: Fixing ’ttib’ to 0 suggests that 

decreasing the value of the ’ttib’ node 

could modulate MCI-associated 

attractors. ’ttib’ likely denotes total 

time in bed, another sleep metric. 

Reducing ’ttib’ by maintaining an 

optimized sleep duration may promote 

sleep efficiency and potentially 

counteract processes contributing to 

MCI. But rigorous experimental 

validation is essential to evaluate this 

computational prediction and 

determine whether interventions 

targeting ’ttib’ could translate to 

physiological effects.  

3) ’meanws’: 1: Increasing ’meanws’ to 1 

indicates that enhancing the value of 

the ’meanws’ node may regulate MCI 

attractors. ’meanws’ plausibly 

represents average walking speed, a 

measure of 15 motor function. 

Improving ’meanws’ by promoting 

mobility may help compensate for 

processes underlying MCI. However, 

the precise identities and relationships 

of these network nodes remain 

unknown without wet lab 

experimentation to validate their 

physiological relevance.  

4) ’ttib’: 1, ’sleeplatency’: 0: Maintaining 

an optimal total time in bed while 

decreasing sleep latency may enhance 

sleep efficiency and continuity, 

potentially mitigating MCI. However, 

experimental validation is needed.  

5) ’waso’: 0, ’ttib’: 1: Decreasing time 

awake after sleep onset while 

maintaining an optimized total time in 

bed may improve sleep maintenance, 

aiding sleep-dependent processes that 

could mitigate MCI. But further 

research is required.  

6) ’timeasleep’: 1, ’sleeplatency’: 0: 

Fixing total sleep time at an optimized 

duration while decreasing sleep latency 

could regulate MCI attractors by 

promoting sleep optimization. 

However, experimental work is needed 

to define an appropriate value 

for ’timeasleep’. 

7) ’timeasleep’: 1, ’waso’: 0: Decreasing 

time awake after sleep onset while 

fixing total sleep time at an optimized 

duration may reflect enforcing 

consolidated sleep. This could 

theoretically mitigate MCI symptoms 

by optimizing sleep. But 

experimentally validating and 

translating these predictions into 

interventions requires more work.  

 

8) ’meanws’: 1, ’numfir’: 0: Increasing 

average walking speed while 

decreasing sensor firings in the home 

may reflect promoting mobility and 

reducing sedentary behavior. This 

could theoretically counteract 

processes underlying MCI. However, 

validation is required.  

 

9) ’meanws’: 0, ’waso’: 0, ’ttib’: 1: 

Decreasing average walking speed 

while decreasing time awake after 

sleep onset and maintaining an 

optimized total time in bed may reflect 

promoting rest through limiting 

mobility and optimizing sleep. This 

could theoretically mitigate MCI 

symptoms, though experimental 

validation is needed.  

 

10) ’wsq3’: 0, ’timeasleep’: 

1, ’sleeplatency’: 0: Decreasing upper 

quartile of walking speed while fixings 

total sleep time at an optimized 

duration and decreasing sleep latency 

may reflect limiting higher-intensity 

activity while promoting basic sleep 

optimization. This could help mitigate 

MCI in sedentary individuals, though 

rigorous testing would be required.  

 

11) ’wscv’: 0, ’waso’: 0, ’timeasleep’: 1: 

Decreasing variation in walking speed 

while decreasing time awake after 

sleep onset and fixing  total sleep time 

at an optimized duration may reflect 

enforcing consistent activity at a basic 
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level while promoting sleep 

consolidation for a set duration. This 

could theoretically aid those with MCI, 

though experimental validation is 

ultimately needed.  

 

12) ’timeasleep’: 1, ’wsq3’: 0, ’meanws’: 

0, ’sleeplatency’: 0: Decreasing 

average and upper quartile walking 

speed while maintaining optimized 

total sleep time and decreasing sleep 

latency may reflect limiting mobility 

and activities while promoting sleep 

optimization. This restorative approach 

could potentially mitigate MCI 

symptoms, but requires rigorous 

testing and refining in experimental 

settings.  

 

13) ’wsq3’: 0, ’sleeplatency’: 

0, ’timeasleep’: 1, ’sleeplivroom’: 

1, ’ttib’: 0: Decreasing upper quartile 

walking speed, while fixings total 

sleep time in the living room and 

reducing sleep latency may reflect 

curtailing intense activity while 

promoting basic sleep optimization. 

The impact of sleep location remains 

undefined, emphasizing need for 

experimental validation and refinement 

of these putative control targets for 

MCI therapy.  

 

14) ’compuse’: 1: Fixing computer use at 

an optimized level may reflect 

leveraging technology in a regulated 

manner to compensate for cognitive 

declines in MCI. However, the specific 

identity and real-world impacts of this 

node require experimental validation. 

Further research is needed to determine 

whether and how optimizing 

technology engagement could 

meaningfully impact MCI symptoms 

in patients.  

 

15) ’sleeplivroom’: 0, ’sleeplatency’: 0: 

Decreasing time asleep in the living 

room while also decreasing sleep 

latency may reflect enforcing a 

regulated sleep schedule in the 

bedroom to promote sleep 

optimization. Sleeping in a dedicated 

bedroom has been associated with 

better sleep quality and continuity. 

However, experimental testing is 

ultimately needed to determine 

whether these dynamical changes 

could indeed regulate MCI associated 

attractors as predicted.  

 

16) ’wsq3’: 1: Increasing the upper quartile 

of walking speed may reflect 

promoting higher-intensity activity to 

counteract sedentary tendencies that 

could contribute to MCI progression. 

However, determining appropriate 

ways to implement this change and 

whether it could indeed regulate MCI 

associated attractors requires 

experimental validation.  

  

The reduced network’s size conferred a 

computational advantage, requiring 2.8x 

less time to identify controls. This trade-

off between fidelity and efficiency is 

typical of network reduction (Qiu et. al., 

2021). The potential control targets in the 

reduced network- ’waso’, ’ttib’, 

and ’meanws’ - warrant rigorous 

experimental validation to test their ability 

to regulate MCI-associated attractors in 

vivo. Studies have shown in silico 

predictions of controls can translate to 

physiological modulation of disease 

dynamics (Chen et. al., 2020). However, 

research is needed to fully evaluate 

interactions, mechanisms and confounds 

(Chen et. al., 2020).  

If validated, mechanistically altering these 

proposed targets- e.g. via drugs 

altering ’waso’ levels, stimulation of nodes 

correlated with ’ttib’ - could provide novel 

MCI treatment strategies by switching 

abnormal attractor states (Chen et. al., 

2020). Network-based approaches 

increasingly contribute control candidates 

(Zhang et. al., 2008).  

 However, limitations remain. In silico 

predictions often oversimplify biology 



Ugbene and Agwemuria (2024)/ FUPRE Journal, 8(1): 22-38(2024) 

Fupre Journal 8(1), 23 - 38(2024)  36 
 

(Zhang et. al., 2008). Incorporating lost 

network details post-reduction may 

improve fidelity. Alternative reduction 

methods preserving different features 

could identify distinct controls (Shreim et. 

al., 2010). Comparing predictions may 

converge on robust interventions (Shreim 

et. al., 2010). Impacts on off-target 

dynamics must be considered to avoid 

adverse effects (Chen et. al., 2020).  

 In summary, while network reduction 

preserved dynamical relevance for 

identifying potential MCI control targets, 

rigorous experimental validation is needed. 

Comparisons across methods, 

incorporation of lost details, and 

evaluation of non-target impacts may 

inform selection of optimal strategies. 

Dynamics-based approaches hold promise 

for iteratively refining predictions through 

experiment modeling cycles (Zhang et. al., 

2008). Network reduction may ultimately 

help create tailored interventions for 

complex conditions like MCI (Wang et. 

al., 2012).   

 

 

4. CONCLUSION  
 In conclusion, our research demonstrates 

the potential of network reduction 

techniques for modeling and regulating 

complex conditions such as MCI. By 

identifying control targets within Boolean 

molecular network models through 

computational algebra, we have identified 

key parameters that can be targeted for 

intervention. Our analysis of the full 

network and reduced network models 

revealed that the parameters most strongly 

associated with MCI were meanws, ttib, 

and waso. While our study provides 

valuable insights into potential control 

targets for regulating MCI, there are 

several limitations that must be 

acknowledged. Our analysis was limited to 

a Boolean molecular network model, and 

future studies should explore the use of 

other modeling techniques. Additionally, 

our study was based on a small sample 

size, and further research is needed to 

validate our findings in larger populations.  

 Looking ahead, our research highlights 

several avenues for future work. Further 

studies could explore the use of network 

reduction techniques in other complex 

conditions and investigate the 

effectiveness of targeting the identified 

control targets. Additionally, future studies 

could explore the use of more 

sophisticated modeling techniques to 

better capture the complexities of 

biological systems. Overall, our research 

emphasizes the potential impact of 

network reduction for modeling and 

regulating complex conditions like MCI. 

By identifying key control targets, these 

techniques can provide valuable insights 

into potential interventions for these 

conditions.  
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