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ARTICLE INFO 

 

ABSTRACT 

This article provides an in-depth overview of the guard cell signaling network 

and its role in regulating stomatal aperture in plants via computational algebra. 

Stomatal pores in plant leaves allow for gas exchange but also result in water loss 

through transpiration, making the regulation of stomatal aperture critical for 

plant water balance, photosynthesis, and stress response. The guard cell signaling 

network is a complex regulatory network that controls the opening and closing of 

stomatal pores in plants. It consists of a variety of signaling pathways, including 

those involving calcium, nitric oxide, and second messengers such as Cyclic 

guanosine monophosphate (cGMP) and cyclic ADP-ribose (cADPR). The article 

discusses the interactions between these pathways and the mechanisms by which 

guard cells respond to environmental cues such as light, CO2 levels, and 

humidity. Overall, this article provides valuable insights into the regulatory 

structure of the guard cell signaling network and its potential applications in 

optimizing plant traits. 
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1. INTRODUCTION 

Control of stomatal aperture is essential for 

plant water balance, photosynthesis, and 

stress response (Yoshida et. al., 2015). While 

stomatal movements are regulated by 

complex signaling networks, existing 

interventions lack mechanistic precision 

(Rodrigues and Shan, 2022). Boolean 

modeling offers a framework for identifying 

potential regulatory nodes that finely tune 

aperture dynamics (Saandatpour et. al., 

2011) and (Albert, 2003). The node control 

technique systematically uncovered control 

targets able to modify attractors when 

modulated (Su and Pang, 2023). By fixing 

values of nodes within minimum control 

sets, dynamics constrain to alternative 

attractors (Ruths and Ruths, 2014), 

representing implementable interventions. 

(Saadatpour et al., 2010) constructed an 

asynchronous Boolean model of guard cell 

signaling. Leveraging this established 

network, we aimed to:  

 Apply node control analysis to 

identify potential regulators of 

stomatal aperture. 

 Recover known and discover novel 

control targets within the boolean 

model. 

 Propose experimentally testable 

hypotheses about key nodes 

mediating aperture control. 

 

More broadly, we sought to demonstrate 

how integrating Boolean modelling with 

systems control methods may inform 
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development of mechanism-based 

interventions for biological systems. 

 

2. MATERIALS AND METHODS 

The guard cell is a specialized cell found in 

the leaves of plants that plays a critical role 

in regulating gas exchange and water loss. 

The behavior of guard cells is controlled by 

a complex network of molecular 

interactions, and understanding the 

dynamics of this network is important for 

developing strategies to improve plant water 

use efficiency (Kim, 2010). To study the 

behavior of the guard cell network, 

researchers have developed a Boolean 

model that represents the interactions 

between key molecules involved in the 

control of stomatal opening and closing 

(Roelfsema and Hedrich, 2005). A Boolean 

network is a type of dynamical system that 

operates in discrete time and variable states 

(Kauffman, 1969). It consists of a collection 

of binary variables, each taking values of 

either 0 or 1. The network is defined by a 

function 𝐹 = (𝑓1, … , 𝑓𝑛): *0,1+𝑛 → *0,1+𝑛 

where each component function 𝑓𝑖: *0,1+𝑛 →
*0,1+ is a Boolean function that determines 

how the future value of the i-th variable 

depends on the present values of the other 

variables. This model consists of a set of 

Boolean equations that describe the behavior 

of each node in the network. Leveraging on 

the reconstructed network of (Saadatpour et. 

al., 2010) as shown in Figure 1, the boolean 

model equation are; 

𝑦1 = 𝐴𝐷𝑃𝑅𝑐, 𝑦2 = 𝐶𝐼𝑆, 𝑦3 = 𝐶𝑎2, 𝑦4 =
𝐶𝑎2𝐴𝑇𝑃, 𝑦5 = 𝐺𝐶, 𝑦6 = 𝐼𝑛𝑠𝑃3, 𝑦7 =
𝐾𝐴𝑃, 𝑦8 = 𝐾𝐸𝑉, 𝑦9 = 𝑁𝑂, 𝑦10 =
𝑁𝑂𝑆, 𝑦11 = 𝑃𝐿𝐶, 𝑦12 = 𝑐𝐴𝐷𝑃𝑅, 𝑦13 =
𝑐𝐺𝑀𝑃   (1) 

 

Following the above assumptions, the 

boolean model equation from (Saadatpour 

et. al., 2010) becomes; 

𝑓1 = 𝑦9  

 𝑓2 = 𝑦12 ∧ 𝑦13 ∨ 𝑦6  

 𝑓3 = 𝑦2 ∧ ¬𝑦4  

 𝑓4 = 𝑦3  

 𝑓5 = 𝑦9  

 𝑓6 = 𝑦11  

 𝑓7 = ¬𝑦3  

 𝑓8 = 𝑦3  

 𝑓9 = 𝑦10  

 𝑓10 = 𝑦3  

 𝑓11 = 𝑦3  

 𝑓12 = 𝑦1  

 𝑓13 = 𝑦5     
     

 (2)  

 

 

Figure 1: Guard Cell Signalling Pathway 

see (Saadatpour et. al., 2010) 

 

 

The Boolean model used in studying the 

guard cell network represents logical 

operations using certain symbols. The 

ampersand symbol (∧) corresponds to the 

logical AND operation, which requires the 

combination of multiple inputs for 

activation. The pipe symbol (∨) corresponds 

to the logical OR operation, which allows 

for activation by either of two independent 

inputs. The tilde symbol (¬) corresponds to 

the logical NOT operation, which represents 

negative regulation that inactivates the target 

(Roelfsema, 2005). Figure 1 displays the 

wiring diagram of the reconstructed network 

of (Saadatpour et. al., 2010). 
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By endowing the set *0, 1+ with the structure 

of a finite field using standard addition and 

multiplication, denoted as 𝐹2 = *0, 1+, the 

functions  𝑓𝑖 ∶ 𝔽2
𝑛 → 𝔽2 can be expressed as 

polynomials over 𝐹2. Consequently, the 

dynamical system 𝐹 = (𝑓1, … , 𝑓𝑛) ∶  𝔽2
𝑛  →

𝔽2
𝑛  can be represented as a polynomial 

dynamical system, which is described in 

(Murrugarra et. al., 2016). This polynomial 

representation of Boolean networks is a 

valuable tool for analyzing their dynamics. 

To transform Boolean functions into 

polynomials, we follow a set of rules that 

govern how Boolean operations are 

computed modulo 2 in 𝐹2,𝑦1, … , 𝑦𝑛-. 
Specifically, the logical AND operation 

between variables 𝑥 and 𝑦, denoted by 𝑥 ∧
𝑦, is equivalent to their product, 𝑥𝑦. The 

logical OR operation, denoted by 𝑥 ∨ 𝑦, is 

equivalent to their sum plus their product, 

𝑥 + 𝑦 + 𝑥𝑦. The squaring of a variable 𝑥 is 

equivalent to itself, 𝑥2 = 𝑥. The 

multiplication of a variable 𝑥 by a scalar 𝜆  

is equivalent to 0 for any scalar 𝜆 ∈ ℜ, 

𝜆𝑥 = 0. Finally, the logical NOT operation, 

denoted by ¬𝑥, is equivalent to 1 plus the 

variable 𝑥, ¬𝑥 = 1 + 𝑥. Applying these 

rules to the network yields a set of 

polynomials that describe the dynamics of 

the system. 

𝑓1 = 𝑦9   

 𝑓2 = 𝑦6𝑦12𝑦13 + 𝑦6 + 𝑦12𝑦13  

 𝑓3 = 𝑦2(1 + 𝑦4) = 𝑦2 + 𝑦2𝑦4  

 𝑓4 = 𝑦3  

 𝑓5 = 𝑦9  

 𝑓6 = 𝑦11  

 𝑓7 = 1 + 𝑦3  

 𝑓8 = 𝑦3  

  𝑓9 = 𝑦10  

  𝑓10 = 𝑦3  

  𝑓11 = 𝑦3  

  𝑓12 = 𝑦1  

 𝑓13 = 𝑦5     
     

 (3) 

 

Identifying attractors is a crucial step in 

understanding and controlling complex 

systems, and computational algebra provides 

useful tools for doing so. See (Veliz-Cuba et. 

al. 2010) and (Veliz-Cuba et. al. 2014). To 

identify the steady states of the network, we 

need to solve a system of equations where 

𝑓𝑖 = 𝑦𝑖 for each node 𝑖 in the network. This 

means we are looking for the roots of a set 

of equations 𝑔1 = 0, where 𝑔𝑖 = 𝑓𝑖 − 𝑦𝑖. By 

solving this system of equations, we can 

determine the possible steady states of the 

network and gain insights into the 

underlying mechanisms that govern its 

behavior. 

𝑔1 = 𝑦9 − 𝑦1  

𝑔2 = 𝑦6𝑦12𝑦13 + 𝑦6 + 𝑦12𝑦13 − 𝑦2  

𝑔3 = 𝑦2 + 𝑦2𝑦4 − 𝑦3  

𝑔4 = 𝑦3 − 𝑦4  

 𝑔5 = 𝑦9 − 𝑦5  

  𝑔6 = 𝑦11 − 𝑦6  

 𝑔7 = 1 + 𝑦3 − 𝑦7  

 𝑔8 = 𝑦3 − 𝑦8  

 𝑔9 = 𝑦10 − 𝑦9  

 𝑔10 = 𝑦3 − 𝑦10  

 𝑔11 = 𝑦3 − 𝑦11  

 𝑔12 = 𝑦1 − 𝑦12  

 𝑔13 = 𝑦5 − 𝑦13    
     

 (4) 

 

As the system is non-linear, traditional 

methods such as Gaussian elimination 

cannot be used to solve it. However, 

computational algebra provides an 

alternative approach by encoding the 

solutions as an algebraic object known as an 

ideal of polynomials. In our case, the ideal is 

represented as 

𝐼 =
*𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8, 𝑔9, 𝑔10, 𝑔11, 𝑔12, 𝑔13+
.  We can then seek a simpler representation 

of this ideal by finding its Grӧbner basis 

(Cox, 1998) using mathematical software 

tools like (Sagemath, 2021). By finding the 
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Grӧbner basis of the ideal, we obtain a 

simpler system that has the same solutions 

as the original system. This approach 

provides a powerful tool for solving non-

linear systems and understanding their 

behavior. After solving the above equation 

(4), we arrive at;  
𝑔1 = 0  𝑔2 = 0  𝑔3 = 0  

𝑔4 = 0  𝑔5 = 0  𝑔6 = 0  

𝑔7 = 1  𝑔8 = 0  𝑔9 = 0  

𝑔10 = 0 𝑔11 = 0 𝑔12 = 0  

𝑔13 = 0      
     (5) 

Hence 0000001000000 is a steady state of 

the network. 

  

a. Node Control 

One approach to identifying control targets 

in this network is the node control method. 

This method involves analyzing the 

structure of the network and identifying the 

minimum set of nodes that must be 

controlled to achieve a desired outcome. 

Let us consider a node 𝑥𝑖 in the wiring 

diagram 𝑊. We can encode the control of 

this node, which can be either a knock-out 

or a constant expression, using the function.  
𝐹𝑗(𝑦, 𝑢𝑖

;, 𝑢𝑖
:) ≔ (𝑢𝑖

; + 𝑢𝑖
: + 1)𝑓𝑗(𝑦) + 𝑢𝑖

: ∀ 𝑖, 𝑗 =

1, … , 𝑛      (6)  

where 𝑓𝑗(𝑦) represents the Boolean function 

at node 𝑗 see (Murrugarra, 2016). By setting 

𝑢𝑖
; and 𝑢𝑖

: to all possible values in  𝐹2
2, we 

obtain the following control settings: 

 If 𝑢𝑖
; = 0 and 𝑢𝑖

: = 0 then 

𝐹𝑗(𝑦, 0, 0) = 𝑓𝑗(𝑦), indicating that 

the control is not active. 

 If 𝑢𝑖
; = 1 and 𝑢𝑖

: = 0 then 

𝐹𝑗(𝑦, 1, 0) = 0, representing the 

knock-out of node 𝑦𝑗. 

 If 𝑢𝑖
; = 0 and 𝑢𝑖

: = 1 then 

𝐹𝑗(𝑦, 0, 1) = 1, representing the 

constant expression of node 𝑦𝑗. 

 If 𝑢𝑖
; = 1 and 𝑢𝑖

: = 1 then 

𝐹𝑗(𝑦, 1, 1) = 𝑓𝑗(𝑦1, … , 𝑦𝑚) + 1, 

which changes the Boolean function 

of node 𝑗 to its negative value, but 

this might not be a relevant case of 

control. 

Therefore, by manipulating 𝑢𝑖
; and 𝑢𝑖

:, we 

can control the behavior of node 𝑦𝑖 and 

study the dynamics of the network under 

different conditions (Chaves et. al., 2005). In 

the context of the guard cell network, these 

outcomes might include increasing water 

use efficiency or improving drought 

tolerance. To apply node control analysis to 

the guard cell model, we first convert the 

Boolean equations into a set of linear 

equations (3) in the form 
𝐹𝑗(𝑦, 𝑢𝑖

;, 𝑢𝑖
:) − 𝑦𝑗 = 0    

     (7) 

 We are going to use computational algebra 

to identify the minimum set of nodes that 

must be controlled to achieve 𝑦3 = 1, which 

is a potential node control that will block the 

undesired state. Hence 
(𝑢1

: + 𝑢1
; + 1)𝑦9 + 𝑢1

: − 𝑦1 = 0  

(𝑢2
: + 𝑢2

; + 1)(𝑦6𝑦12𝑦13 + 𝑦6 + 𝑦12𝑦13) + 𝑢2
: −

𝑦2 = 0  
(𝑢3

: + 𝑢3
; + 1)(𝑦2 + 𝑦2𝑦4) + 𝑢3

: − 𝑦3 = 0  

(𝑢4
: + 𝑢4

; + 1)𝑦3 + 𝑢4
: − 𝑦4 = 0  

(𝑢5
: + 𝑢5

; + 1)𝑦9 + 𝑢5
: − 𝑦5 = 0  

(𝑢6
: + 𝑢6

; + 1)𝑦11 + 𝑢6
: − 𝑦6 = 0  

(𝑢7
: + 𝑢7

; + 1)(1 + 𝑦3) + 𝑢7
: − 𝑦7 = 0  

(𝑢8
: + 𝑢8

; + 1)𝑦3 + 𝑢8
: − 𝑦8 = 0  

(𝑢9
: + 𝑢9

; + 1)𝑦10 + 𝑢9
: − 𝑦9 = 0  

(𝑢10
: + 𝑢10

; + 1)𝑦3 + 𝑢10
: − 𝑦10 = 0  

(𝑢11
: + 𝑢11

; + 1)𝑦3 + 𝑢11
: − 𝑦11 = 0  

(𝑢12
: + 𝑢12

; + 1)𝑦1 + 𝑢12
: − 𝑦12 = 0  

(𝑢13
: + 𝑢13

; + 1)𝑦5 + 𝑢13
: − 𝑦13 = 0  

     

 (8) 

 In Equation 8, we can find all the parameter 

values that lead to a steady state where 𝐶𝑎2: 

is ON. Our objective is to identify the 

parameter values for which this system of 

equations has no solution. However, given 

that each node can have one of three 

possible states (no control, deletion, or 

constant expression), there are a total of 313 

networks that need to be analyzed. Hence, 

performing an exhaustive search is 

computationally challenging (Katebi et. al., 

2020). 
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Fortunately, computational algebra 

(groebner basis of the ideals) offers an 

alternative approach that enables us to 

identify the parameter combinations that 

prevent the disease states from being fixed 

points of the system. The parameter 

combinations are enclosed in brackets and 

consist of entries that are equal to zero 

which includes; 
*𝑢4

; = 1, 𝑢13
: = 1, 𝑢1

: = 1+, *𝑢5
: = 1, 𝑢12

: = 1, 𝑢4
; =

1+  
*𝑢5

; = 1, 𝑢4
; = 1, 𝑢1

: = 1+, *𝑢12
: = 1, 𝑢4

; = 1, 𝑢13
: =

1+  
*𝑢10

: = 1, 𝑢4
; = 1+, *𝑢9

: = 1, 𝑢4
; = 1+  

*𝑢4
; = 1, 𝑢11

: = 1+, *𝑢4
; = 1, 𝑢2

: = 1+  
*𝑢4

; = 1, 𝑢6
: = 1+     

     (9) 

 

However, identifying the minimum set of 

control targets is not the only criterion for 

evaluating control targets. Researchers must 

also consider whether the predicted control 

targets are biologically plausible based on 

existing knowledge of the network. This 

involves considering factors such as the 

functional role of each node in the network, 

the degree to which each node is affected by 

external factors such as light and 

temperature, and the known interactions 

between nodes. 

 

In this model, all attractors are steady 

states, which means that the basin sizes 

include the steady states themselves. 

However, it’s important to note that 

node 𝑦3 = 𝐶𝑎2, which corresponds to 𝐶𝑎2:, 

is a conceptual node and doesn’t affect 

network control. Therefore, it is not a 

relevant solution for our purposes. Overall, 

the node control method provides a powerful 

tool for identifying control targets in 

complex biological networks such as the 

guard cell network. However, researchers 

must carefully evaluate predicted control 

targets based on biological knowledge to 

ensure that they are relevant and actionable. 

 

 

 

 

 

 

                 Table 1: Control Nodes for the Gaurd Cell Signalling Network 
Solution Control Targets Attractor Bazin Size (%) 

𝑢4
; 

𝑢6
: 

𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 
𝐼𝑛𝑠𝑃3 =  𝑂𝑁 

 

1110111111101 

 

100 

𝑢4
; 

𝑢2
: 

𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 
𝐶𝐼𝑆 =  𝑂𝑁 

 

1110111111101 

 

100 

𝑢4
; 

𝑢11
:  

𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 
𝑃𝐿𝐶 =  𝑂𝑁 

 

1110111111101 

 

100 

𝑢9
: 

𝑢4
; 

𝑁𝑂 =  𝑂𝑁 
𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 

 

1110111111101 

 

100 

𝑢10
:  

𝑢4
; 

𝑁𝑂𝑆 =  𝑂𝑁 
𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 

 

1110111111101 

 

100 

𝑢12
:  

𝑢4
; 

𝑢13
:  

𝑐𝐴𝐷𝑃𝑅 =  𝑂𝑁 
𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 

𝑐𝐺𝑀𝑃 =  𝑂𝑁 

 

1110111111101 

 

100 

𝑢5
: 

𝑢4
; 

𝑢1
: 

𝐺𝐶 =  𝑂𝑁 
𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 

𝐴𝐷𝑃𝑅𝑐 =  𝑂𝑁 

 

1110111111101 

 

100 

𝑢5
: 

𝑢12
:  

𝑢4
; 

𝐺𝐶 =  𝑂𝑁 
𝑐𝐴𝐷𝑃𝑅 =  𝑂𝑁 

𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 

 

1110111111101 

 

100 

𝑢4
; 

𝑢13
:  

𝑢1
: 

𝐶𝑎2𝐴𝑇𝑃 =  𝑂𝐹𝐹 
𝑐𝐺𝑀𝑃 =  𝑂𝑁 

𝐴𝐷𝑃𝑅𝑐 =  𝑂𝑁 

 

1110111111101 

 

100 
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3. RESULT 

Stomatal pores in plant leaves allow for gas 

exchange, but also result in water loss 

through transpiration. Therefore, the 

regulation of stomatal aperture is critical for 

plant water balance, photosynthesis, and 

stress response. The opening and closing of 

stomatal pores are regulated by guard cells, 

which are specialized cells that surround the 

stomatal pore (Hetherington and Woodward, 

2003). Guard cells sense environmental 

cues, such as light, 𝐶𝑂2 levels, and 

humidity, and respond by changing their 

shape and volume, resulting in either 

stomatal opening or closure. The guard cell 

signaling network is a complex regulatory 

network that controls the opening and 

closing of stomatal pores in plants. It 

consists of a variety of signaling pathways, 

including those involving calcium, nitric 

oxide, and second messengers such as 

cGMP and cADPR (Li et. al., 2019). The 

interactions between these pathways are 

complex and not well understood. In this 

article, we provided an overview of the 

guard cell signaling network and its role in 

regulating stomatal aperture in plants, using 

approaches, such as Boolean modeling and 

node control analysis, to identify potential 

control targets within the network. 

Calcium is a critical signaling molecule in 

the guard cell signaling network. It plays a 

key role in regulating stomatal aperture by 

controlling the opening and closing of ion 

channels in the guard cell plasma 

membrane. In response to environmental 

cues, guard cells increase their cytosolic 

calcium concentration, which leads to the 

activation of downstream signaling 

pathways that ultimately result in either 

stomatal opening or closure. Calcium is 

stored in two organelles in the guard cells - 

the endoplasmic reticulum (ER) and the 

vacuole. Calcium release from the ER is 

mediated by inositol triphosphate (InsP3) 

and cyclic ADP-ribose (cADPR), which are 

produced in response to phospholipase C 

(PLC) and ADP-ribosylcyclase (ARC) 

activity, respectively. Calcium release from 

the vacuole is mediated by the vacuolar 

calcium channel (VCC). Calcium extrusion 

is mediated by the plasma membrane Ca2+-

ATPase and the Ca2+/H+ exchanger 

(CAX1) (MacRobbie, 2006). 

Based on the results obtained from 

Boolean modeling and node control 

analysis, several potential control targets 

within the guard cell signaling network have 

been identified. 

 Nitric Oxide Signaling: Nitric oxide 

(NO) is a key signaling molecule that 

plays a critical role in regulating 

stomatal aperture. Fixing NOS (nitric 

oxide synthase) or NO while 

constraining Ca2+ ATPase (a 

calcium pump) can enable attractor 

switching, suggesting that these 

nodes play a role in regulating 

calcium dynamics that ultimately 

control stomatal aperture. 

 Phosphoinositide Signaling: 

Manipulating components upstream 

of calcium, such as PLC, CIS 

(constitutive photomorphogenic 1 

interacting protein), and InsP3, can 

allow attractor modification when 

combined with fixing Ca2+ ATPase. 

This aligns with current knowledge 

of how phosphor inositide signaling 

and cGMP/cADPR mediate changes 

in cytosolic calcium levels during 

stomatal movements. 

 Second Messengers: Targeting 

second messengers like cGMP, 

cADPR, and InsP3 in conjunction 

with suppressing Ca2+ ATPase 

activity may be a potential control 

strategy. These calcium mediators 
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are well-positioned to finely tune 

aperture by integrating various 

hormonal and environmental signals. 

 Calcium Homeostasis: The frequent 

appearance of Ca2+ ATPase in the 

minimum control sets highlights the 

centrality of calcium homeostasis in 

governing stomatal behavior. Strict 

control of calcium pumping and 

extrusion appears critical for 

modulating apertures.                                                                  

These potential control targets provide 

valuable insights into the activity of key 

components in the guard cell signaling 

network and may help to inform further 

research into the regulation of stomatal 

aperture in plants. 

 

4.  CONCLUSION 

The guard cell signaling network is a 

complex regulatory network that controls 

stomatal aperture in plants. Calcium, nitric 

oxide, and second messenger pathways are 

critical components of this network, and 

recent studies have used systems biology 

approaches, such as Boolean modeling and 

node control analysis, to identify potential 

control targets within the network. Prior 

study (Dinwoodie, 2016) also identified 

control targets using basin cylinders within 

asynchronous models. Though differing 

assumptions yield insights, experimentation 

validates predictions, refining conceptual 

insights into purposeful network 

interventions. Iteratively refining 

computational analyses via experimentation 

transforms conceptual insights into 

manipulated outcomes. This methodology 

illustrates a blueprint for intervening in 

biological networks to realize solutions - a 

rigorous yet humble process guiding ethical 

action. 

 

 

 

 

Appendix 

Table 2: Boolean Transition 

Function (Rules) 
Node Boolean Rule 

ADPRc* NO 

CIS* cADPR AND cGMP OR InsP3 

Ca
2+* 

CIS AND NOT Ca
2+

ATP 

Ca
2+

ATP Ca
2+ 

GC* NO 

InsP3 PLC 

KAP* NOT Ca
2+ 

KEV* Ca
2+ 

NO NOS 

NOS* Ca
2+ 

PLC* Ca
2+ 

cADPR* ADPRc 

cGMP* GC 

 

Table 3: Nodes and their 

corresponding gene names 
Abbreviation Full Name 

ADPRc ADP-ribosyl cyclase 

CIS Ca2+ influx to the cytosol 

Ca
2+ 

Calcium ions 

Ca
2+

 ATP Calcium ATPase 

GC Guanylyl cyclase 

KAP K+ efflux antiporter 

NO Nitric oxide 

PLC Phospholipase C 

InsP3 Inositol trisphosphate 

KEV K
+
 efflux vacuolar channel 

NOS Nitric oxide synthase 

cADPR Cyclic ADP-ribose 

cGMP Cyclic guanosine 

monophosphate 
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