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ARTICLE INFO 

 

ABSTRACT 

The Niger Delta, a cornerstone of Nigeria's oil and gas sector, plays a significant 

role in the Nation's energy landscape. This research concentrates on enhancing 

reservoir characterization, specifically emphasizing advancing rock facies 

classification. Employing advanced machine-learning methodologies and a dataset 

from 12 wells containing crucial well log parameters, such as Gamma Ray, 

Resistivity Micro-Spherical, Volume of Shale, Resistivity Deep, Resistivity 

Medium, Density, and Porosity, we conducted a rigorous evaluation of various 

classification models. The Random Forest algorithm emerged as the optimal 

choice, achieving an impressive F1 score of 0.93 and an accuracy of 0.93 on the 

cross-validation set. A meticulous analysis of identified facies classes, including 

Shale, Lower Shoreface, Middle Shoreface, Upper Shoreface, Transition 

Shoreface, Over Bank, and Channel, through confusion matrices, offered 

profound insights into the Model's efficiency. Feature importance analysis 

underscored the critical role of variables such as volume of shale, gamma ray, 

porosity, and bulk density in driving accurate predictions. This research 

significantly advances subsurface exploration in the Niger Delta, highlighting the 

effectiveness of machine learning for geologic characterization within the region's 

intricate geological landscape. 
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1. INTRODUCTION 

In the energy exploration and production 

landscape, achieving operational excellence 

and optimizing resource utilisation are 

paramount goals, propelling the ongoing 

evolution of reservoir characterization 

methodologies. At the core of this process 

lies rock facies classification, where precise 

attribution of specific rock types to samples 

based on measured properties plays a 

foundational role (Dubois et al., 2007). 

Accurate facies classification is crucial in 

seismic interpretation, as different rocks 

exhibit varying permeability and fluid 

saturation for a given porosity. In regions like 

the Niger Delta, achieving precise 

classification of rock facies poses formidable 

challenges due to complex geological 
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features (Opafunso, 2007). Traditionally, this 

endeavour has relied on manual 

interpretation by expert geologists, a process 

susceptible to subjectivity and time 

constraints.  

The Niger Delta, spanning the Gulf of 

Guinea, holds a pivotal role in Nigeria's oil 

and gas sector, covering approximately 

29,900 square kilometres of diverse 

landscapes (Opafunso, 2007). As the largest 

wetland in Africa, it supports abundant 

biodiversity and plays a crucial economic 

role. However, the region's distinct 

geological features, characterised by 

expansive wetlands and flat terrains, 

contribute to the inherent complexity of 

accurately predicting lithological formations 

(Opafunso, 2007). 

In response to these challenges, machine-

learning techniques have shown an increased 

prospect of addressing specific lithological 

issues in the Niger Delta. Machine learning's 

exceptional capacity to discern complex 

patterns, adapt to intricate data structures, 

and expedite decision-making presents an 

unprecedented opportunity to revolutionise 

rock facies classification (L’Heureux et al., 

2017). Encouraged by the growth of big data 

and increased computational power, recent 

years have witnessed a renewed interest in 

machine-learning techniques within the 

geophysical community (Smith & Treitel, 

2010; Zhang et al., 2014; Zhao et al., 2015; 

Kobrunov & Priezzhev, 2016). 

In this study, a machine-learning model 

tailored for rock facies classification in the 

Niger Delta was developed. The study 

includes data collection, algorithm 

exploration and implementation, model 

optimisation, performance evaluation, and 

results analysis. By leveraging machine 

learning, this research aims to overcome the 

challenges posed by the region's geological 

complexities, ultimately contributing to 

enhanced reservoir characterisation and 

sustainable hydrocarbon recovery. The 

significance of this study is twofold. Firstly, 

it will provide a more objective and 

consistent approach to rock facies 

classification, reducing subjectivity and 

improving the reliability of reservoir 

characterisation. Secondly, it will enable 

better decision-making in petroleum 

engineering by facilitating accurate 

identification and understanding of 

subsurface geological formations. The 

successful implementation of machine 

learning techniques in rock facies 

classification will have practical implications 

for hydrocarbon recovery, operational 

efficiency, and reservoir management 

strategies. 

2. MATERIALS AND METHODS 

Our dataset comprises wireline log 

measurements extracted from 12 wells 

scattered across various fields within the 

Niger Delta region. These wells offer diverse 

geological conditions and formations, 

presenting a robust dataset for our analysis. 

The dataset encompasses wireline log 

measurements are Gamma ray (GR), 

Microresistivity (RES_MIC), Shale Volume 

(VSH), Deep Resistivity (RES_DEP), 

Medium Resistivity (RES_MED), Bulk 

Density (RHOB) and Porosity (PHIE).  

These logs were vital indicators of 

lithological characteristics crucial for facies 

classification. Each well log was 

accompanied by depth intervals of half a foot, 

facilitating precise localization of 

measurements. Facie labels corresponding to 

these intervals were provided. The facies 

comprise seven distinct lithological facies 

prevalent in the Niger Delta, these include; 

Shale, Lower shoreface, Middle Shoreface, 

Upper shoreface, Transition shoreface, 

Overbank and Channel. 
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This study employed the petrolib library to 

process the dataset to load well-log data into 

a structured data frame, enabling efficient 

integration from multiple wells. Using a loop 

to iterate through well names, we loaded logs 

with 'pl.file_reader.load_las', aggregating 

data into a master dataframe. This 

streamlined approach ensured smooth data 

handling, setting the stage for comprehensive 

analysis. 

 
# loading the required libraries 
>>> import numpy as np 
>>> import pandas as pd 
>>> import seaborn as sns 
>>> import lasio as las 
>>> import petrolib as pl 
 
# Creating a list that contains the 
name of all the wells 
>>> wells = ["Pake1", "Pake5", 
"Pake6", "Pake9", "Pake23", "Pake11", 
"Pake12", "Pake13","Pake14", 
"Pake15","Pake16","Pake18"] 
 
#Loading the well logs for all the 
wells and saving them into one 
dataframe 
>>> df1, log_las = 
pl.file_reader.load_las(wells[0], 
return_csv= True) 
>>> df1.reset_index(inplace = True) 
>>> for well in wells[1:]:  

    df2, log_las = 
pl.file_reader.load_las(well, 
return_csv= True) 
    df2.reset_index(inplace = True) 
    df1 = df2.append(df1)         
>>> df1.reset_index(drop=True, 
inplace = True) 
>>> df1.head() 
 

2.1 Data Pre-processing and 

Exploratory Data Analysis 

After loading the well log data into a 

dateframe, Duplicate removal was conducted 

to ensure data integrity, outlier identification, 

and removal to enhance dataset robustness, 

and meticulous handling of missing values 

using sckit-learn iterative imputer. These 

steps collectively contributed to a clean, 

accurate, and complete dataset suitable for 

machine learning tasks. Exploratory data 

analysis was carried out on the data to gain 

insights into the data. Figure 1 shows the 

distribution of the rock facies in the data set. 

Upper shoreface emerges as the dominant 

rock facie, constituting approximately 

59.08% of the dataset, while shale follows 

closely, representing around 21.50%. 

However, there is an imbalance in the 

representation of certain rock facies, 

Transition Shoreface, and Over Bank, 

comprising only 0.10% and 0.37% of the 

dataset respectively.  

 

Figure 1: Distribution of Rock Facies 
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We can use ''data.describe()'' to provide a 

quick overview of the statistical distribution 

of the training data (Table 1). The count row 

in Table 1 indicates 114114 feature vectors in 

the dataset. Table 2 includes the descriptions 

linked to these classes. It should be noted that 

several of these facies do not have clear 

boundaries and instead transition gradually 

into one another. Misidentification of these 

adjacent facies is likely to happen. The 

Adjacent Facies column in Table 2 displays 

the associated classes. 

 

Table 1: Dataset description and summary 

 

DEPT GR RES_MIC VSH FACIES RES_DEP RES_MED RHOB PHIE 

count 114114 76858 76082 108174 114114 74596 90102 37285 55325 

mean 5589.22 61.51 8.56 0.25 2.56 91.56 28.12 2.19 0.19 

Std 2464.82 36.42 3.89 0.35 1.70 183.57 26.52 0.13 0.11 

min 100.00 2.12 0.07 0.00 0.00 0.05 0.05 1.73 0.00 

25% 3786.50 30.80 6.13 0.00 1.00 12.40 10.13 2.11 0.08 

50% 5389.25 47.80 7.82 0.06 3.00 25.93 18.48 2.17 0.25 

75% 6764.00 93.44 10.23 0.47 3.00 64.21 36.95 2.28 0.30 

max 12419.5 160.60 35.36 1.00 6.00 1015.36 161.20 2.63 0.4 

 

                   Table 2: Facies labels with their descriptions 

Facie Description Adjacent Facies 
0 Shale - 
1 Lower shoreface 4 
2 Middle Shoreface 1,3 
3 Upper shoreface  1,2 
4 Transition shoreface 1,3 
5 Overbank - 
6 Channel 5 

 

The training data was standardized using 

Scikit-learn's ‘StandardScaler class’, 

ensuring consistency in quality. Additionally, 

a conventional approach of partitioning the 

dataset into training, testing, and cross-

validation sets in a 48:12:40 ratio was 

adopted, employing the 'train test split' 

function from Scikit-learn to achieve this 

randomized division. 

>>> from sklearn.preprocessing import 
StandardScaler 

>>> scaler = StandardScaler() 

>>> X = scaler. fit_transform (X) 
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>>> from sklearn.cross_validation import 
train_test_split 

>>> X_train, X_CV, y_train, y_CV = 
train_test_split(X, y, test_size=0.4, 
random_state=42) 

>>> X_train, X_test, y_train, y_test = 
train_test_split(X_train, y_train, 
test_size=0.2, random_state=42) 

 

 

2.2 FACIES CLASSIFICATION 

ALGORITHM 

The facies classification algorithms utilized 

in this work include common supervised 

machine learning algorithms, which are; 

Logistic Regression, Support Vector 

Machines (SVM), Decision Trees, K Nearest 

Neighbour (KNN), Random Forest, Single 

Layer Perceptron, and Artificial Neural 

Network (ANN), 

Training involves using a collection of 

labelled data points from controlled wells to 

develop a Model, a function that links 

features to class labels. The classifier can 

predict class labels for new well logs based 

on unlabeled feature vectors after training. 

 

3. RESULTS AND DISCUSSION 

This section presents the results, which show 

the efficiency of the different models 

developed for classifying rock facies. The 

results are discussed, and possible remedial 

actions to improve the models' performance 

in classifying the facies are recommended. 

 

3.1 Results 
The results showing the performance of the 

models developed are shown in Tables 3 to 6 

and Figures 2 to 4.  

Table 3: Evaluation results for all the models - On the test set 

Model Test F1 Score Test ROC 

AUC 
Test Log Loss Test Accuracy 

Random Forest 0.935011 0.962579 0.257787 0.938841 

Support Vector 

Machine 
0.809340 0.902660 0.426820 0.845915 

Logistic Regression 0.789094 0.855874 0.526079 0.822273 

K-Nearest Neighbors 0.873271 0.836113 1.360678 0.879416 

Decision Tree 0.911588 0.804393 3.201321 0.911182 

Naive Bayes 0.828224 0.934143 0.752589 0.822547 

Artificial Neural 

Network 
0.893316 0.951886 0.273496 0.899133 
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Table 4: Evaluation results for all the models - On the Cross Validation (CV) set 

Model CV F1 Score CV ROC AUC CV Log Loss CV Accuracy 

Random Forest 0.926853 0.942965 0.273116 0.930991 

Support Vector 

Machine 
0.799597 0.910761 0.435781 0.837927 

Logistic Regression 0.780818 0.867379 0.532323 0.815734 

K-Nearest Neighbors 0.869217 0.845326 1.404324 0.876506 

Decision Tree 0.904624 0.807707 3.434910 0.904701 

Naive Bayes 0.823652 0.940975 0.774995 0.818319 

Artificial Neural 

Network 
0.888480 0.965677 0.278376 0.895018 

 

Table 5: Accuracy metrics for the test set. – Random Forest classifier 

 

 

 

 

 

 

 

 

Facies precision recall f1-score support 

Shale 0.98 0.99 0.98 2343.00 

Lower Shoreface 0.88 0.87 0.87 397.00 

Middle Shoreface 0.89 0.86 0.88 484.00 

Upper Shoreface 0.94 0.98 0.96 6523.00 

Transition Shoreface 0.25 0.03 0.05 38.00 

Overbank 0.00 0.00 0.00 14.00 

Channel 0.84 0.71 0.77 1156.00 

accuracy 0.94 0.94 0.94 0.94 

macro avg 0.68 0.63 0.64 10955.00 

weighted avg 0.93 0.94 0.93 10955.00 
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Table 6: Accuracy metrics for the Cross Validation (CV) set. – Random Forest classifier 

 

 

 

Figure 2: Confusion Matrix – Random Forest Classifier 

Facies precision recall f1-score support 

Shale 0.97 0.99 0.98 9751.00 

Lower Shoreface 0.88 0.85 0.87 1852.00 

Middle Shoreface 0.85 0.85 0.85 2020.00 

Upper Shoreface 0.94 0.97 0.96 26835.00 

Transition Shoreface 0.55 0.03 0.07 172.00 

Overbank 0.33 0.02 0.05 41.00 

Channel 0.84 0.69 0.76 4975.00 

accuracy 0.93 0.93 0.93 0.93 

macro avg 0.77 0.63 0.65 45646.00 

weighted avg 0.93 0.93 0.93 45646.00 
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Figure 3: Well logs and facies classification results from a single well 
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Figure 4: Feature importance 

3.2 Discussion 
The models were evaluated on the test and 

cross-validation sets using F1 score, test 

accuracy, log loss, and ROC AUC. In Table 

3, a comprehensive overview of the 

performance metrics for various machine 

learning models employed in the facie 

classification is presented. The Random 

Forest algorithm demonstrates notable 

superiority across key evaluation criteria, 

with a Test F1 Score of 93.5% and a test 

accuracy of 93.9%. It showcases robust 

precision and recall capabilities. 

Additionally, the Model achieves a high-test 

ROC AUC of 0.963, indicating strong 

discrimination ability. Notably, the low-test 

log loss of 0.258 reflects the Model's 

confidence in its predictions. Furthermore, 

with a test accuracy of 93.9%, the Random 

Forest model emerges as the optimal choice 

for accurate facie classification. 

In Table 5, a detailed assessment of the 

Random Forest classifier's efficiency in 

classifying various rock facies is presented. 

Shale and Upper Shoreface exhibited high 

precision and recall, signifying robust 

classification accuracy. However, Transition 

Shoreface and Overbank posed challenges, 

with lower precision and recall values 

indicating more frequent misclassifications. 

The confusion matrix, Figure 2, supported 

these results, with Shale instances 

predominantly accurately identified, 

contrasting with the struggles in classifying 

Transition Shoreface and Overbank. These 

observations underscored the complexity of 

facies classification, especially with adjacent 

facies where boundaries blur, as seen in the 

confusion matrix. For example, the 

Transition Shoreface's proximity to other 

facies, such as the Lower and Upper 

Shoreface, affected precision and recall 

scores. 

Furthermore, the dataset's insufficient 

representation of Over Bank and Transition 

Shoreface poses a significant challenge to 

accurate classification. These facies represent 

only 0.10% and 0.37% of the entire dataset. 
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Such imbalances may hinder the Model's 

ability to discern distinct patterns and 

features associated with these facies, 

potentially leading to misclassifications or 

lower predictive performance. Addressing 

these challenges is significant for enhancing 

the Model's accuracy and ensuring more 

accurate geological interpretations. 

Visualising the Random Forest classifier 

results using log plots, Figure 3 is modeled 

after the descriptions found in Pake2 

(Anonymous well) in the Niger Delta. It 

features the graphical representation of the 

seven logs used as features, displaying the 

actual (Manually determined) and predicted 

facies class logs. 

The analysis of feature importance, shown in 

Figure 4, highlights key variables driving the 

Random Forest model's predictions for rock 

facies. VSH_XM (Volume of Shale) emerges 

as the most influential feature, with an 

importance value of 0.2823, followed closely 

by GR_XM (Gamma Ray) at 0.2246. 

Additionally, features like PHIE (Porosity) 

and RHOB (Bulk Density) contribute 

significantly, with importance values of 

0.1696 and 0.1165, respectively. These 

findings underscore the Model's reliance on 

shale volume, gamma ray measurements, 

porosity, and bulk density information for 

accurate predictions, enhancing our 

understanding of the geological factors 

shaping the classification process. 

3.2.1 Result Validation 
The developed models were retested using 

the cross-validation dataset. The results are 

shown in Table 4 and Table 6. The Random 

classifier has an accuracy of 93.1% and an F1 

score of 92.7%, as shown in Table 4. This 

closely matches the Model's performance on 

the test set. 

 

4. CONCLUSION  

The incorporation of machine learning 

algorithms presents a robust and effective 

approach for classifying rock facies in Niger 

Delta. The models are trained using the well 

logs to identify patterns within the dataset, 

including Gamma-ray, Microresistivity, 

Shale Volume, Deep Resistivity, Medium 

Resistivity, Bulk Density, and Porosity 

(PHIE). Models were developed using 

Logistic Regression, Support Vector 

Machines (SVM), Decision Trees, K Nearest 

Neighbour (KNN), Random Forest, Single 

Layer Perceptron, and Artificial Neural 

Network (ANN) algorithms, out of which 

Random Forest has the best results in 

classifying the rock facies. Despite its high 

accuracy in predicting the rock facies, it 

could have better classified the Overbank and 

Transition shoreface due to the imbalanced 

dataset and the Transition Shoreface's 

proximity to other facies, such as Lower 

Shoreface and Upper Shoreface. The volume 

of Shale, Gamma Ray, Porosity, and Bulk 

Density had the most influence on the 

random forest model's predictions.  

The following recommendations are required 

to improve this research work; 

1. More data, particularly for the 

underrepresented, should be obtained 

to improve the ability of the Model to 

classify them correctly. 

2. Continuous Monitoring: Regularly 

recalibrate the Model using updated 

data to maintain relevance. 
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