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ABSTRACT 

The study aims to bridge this gap by scrutinizing the impact of a specific non-

elastic factor, namely the average weight loss, on pipeline weldments and its 

interaction with elastic properties. To fulfil this objective, a comprehensive 

experimental inquiry is conducted, encompassing diverse welding methods, 

materials, and environmental conditions to authentically replicate real-world 

situations. This investigation unveils the intricate interrelation between elastic and 

non-elastic facets, underscoring the necessity of encompassing the latter to ensure 

the dependability of pipeline weldments across various operational contexts. 

Cutting-edge techniques, such as machine learning algorithms and finite element 

simulations, are harnessed to accurately predict and optimize these non-elastic 

factors, thereby enhancing the overall strength and structural integrity of pipeline 

weldments. The experimental setup adheres to the central composite design, 

meticulously constructed utilizing design expert software (version 13.0). The 

response surface methodology analysis yields optimal outcomes, suggesting a gas 

flow rate of 14.667 liters per minute, a voltage of 21.280 volts, and a current of 

160.000 amps. These parameters collectively yield a welded joint with an average 

weight loss value of 0.236, achieving a desirability value of 0.918. Additionally, the 

artificial neural network model is employed to predict output parameters and 

compared against the RSM methodology. The findings underscore the pivotal role 

of optimizing non-elastic performance factors in pipeline weldments. By 

accurately anticipating and controlling the period of immersion, engineers and 

professionals within the pipeline sector can design weldments capable of enduring 

harsh conditions, thus, prolonging pipeline operational lifespans. 
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1. INTRODUCTION 

The structural integrity of pipeline 

weldments is a crucial factor in ensuring the 

safety and reliability of various industries, 

including oil and gas, petrochemicals, and 

energy transportation (Jiang, 2018). 

Achieving optimal structural integrity 

requires a comprehensive understanding of 

the factors that influence weld quality 

(Dogra, 2018). This research focuses on 
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investigating the role of average weight as a 

factor in enhancing the structural integrity of 

pipeline weldments, exploring relevant 

studies, methodologies, and findings. 

Weldments play a vital role in the structural 

integrity of pipelines, and several factors 

impact their quality (Cheng and Chen, 2022; 

Li et al., 2019). These factors include 

welding parameters, material properties, 

environmental conditions, and geometrical 

characteristics (Alzeer et al., 2023). While 

these factors have been extensively studied, 

the consideration of average weight as a 

distinct factor and its influence on weldment 

integrity is an emerging research area. 

Weight, or more specifically, the mass of the 

components being welded, can significantly 

influence the welding process and 

subsequent structural integrity (Seyfipour et 

al., 2023). The weight affects heat 

distribution, cooling rates, thermal stresses, 

and distortion during welding (Sabdin et al., 

2019). The consideration of average weight 

as a controlling parameter can provide 

valuable insights into the complex 

interactions between weight and weldment 

integrity. 

Impacts of Weight on Residual Stresses and 

Distortion: Several studies have highlighted 

the influence of weight on residual stresses 

and distortion in welded structures. Heavier 

components tend to retain heat longer, 

potentially leading to higher residual stresses 

and increased distortion (Spoerk et al., 2020). 

Research by Zhao et al. (2023) emphasized 

the importance of accounting for weight-

related effects on residual stresses and 

distortion to ensure the long-term structural 

integrity of welded pipelines. Weight can 

also affect the microstructure of the 

weldment due to variations in cooling rates 

and thermal cycles (Li et al., 2020). These 

microstructural changes can impact material 

properties, such as hardness, toughness, and 

susceptibility to cracking (Fernandes et al.,). 

The work of Liu (2021) investigated weight-

induced changes in microstructure and 

mechanical properties, further underlining 

the need to model average weight as a factor 

in weldment integrity analysis. Numerical 

modelling approaches, such as computational 

fluid dynamics (CFD) and finite element 

analysis (FEA), have been used to study the 

effects of average weight on weldments. 

These models simulate heat distribution, 

cooling rates, and resulting stresses and 

strains (Miranda and Nogueira, 2019). 

Integrating average weight as a variable in 

these models can provide a quantitative 

understanding of its impact on weldment 

integrity (Linda and Pistorius, 2022). While 

the importance of average weight in 

weldment integrity is recognized, more 

research is needed to develop comprehensive 

models that consider weight alongside other 

influencing factors (Cecchel, 2021). The 

integration of average weight into advanced 

modelling techniques, such as Multiphysics 

simulations, can provide a holistic 

understanding of its role in weldment 

integrity and guide practical applications 

(Ardil, 2023). 

In conclusion, the present study highlights 

the growing significance of modelling 

average weight as a factor in augmenting the 

structural integrity of pipeline weldments. 

Weight affects heat distribution, residual 

stresses, distortion, and microstructural 

changes, all of which impact the quality of 

welded joints. Incorporating average weight 

as a controlling parameter in numerical 

models can contribute to a deeper 

understanding of its influence and aid in the 

development of pipelines with improved 

structural integrity. Further research is 

warranted to refine modelling techniques, 

validate findings through experiments, and 

translate these insights into practical 

applications for industries that rely on welded 

pipelines. 
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2. METHODOLOGY 

2.1. Process parameters  

In this research study, several variables were 

investigated in relation to the temperature of 

the welding pool. These variables included 

welding voltage, gas flow rate, and current. 

To carry out the experiments, twenty runs 

were conducted with varying combinations 

of welding voltage, gas flow rate, and 

current., and these runs were utilized to 

connect two mild steel plates, each spanning 

60 x 40 x 10 mm. To assess the hardness of 

the resulting welds, the Brinell hardness test 

was performed using a specialized Brinell 

hardness testing unit. This test involves the 

use of a tungsten carbide ball with a specific 

diameter (D). The ball is subjected to a 

predetermined force (F), held in place for a 

specified duration (T), and then released. As 

a result of this process, the spherical indenter 

creates a permanent deformation or imprint 

on the tested metal piece. Averaging 

measurements made at two or more places 

inside the indentation yields the indentation's 

diameter (d). To execute the Brinell hardness 

test, The body of the Brinell Hardness 

Testing Machine is enclosed by a system 

consisting of a loading system encompassing 

levers, levers, weights, a hydraulic dashpot, 

and a plunger. The test material is positioned 

on the movable anvil. When the lever is 

engaged, the spherical ball indenter descends 

onto the material, exerting a predefined force 

which is subsequently displayed and 

analysed on the screen. 

  2.2 Design of Experiment 

The design of experiments (DOE) is a 

procedure that is systematic and scientific for 

planning and conducting tests to establish a 

cause-and-effect relationship between 

variables. It is also a rigorous approach for 

manipulating the input factors of a process 

and observing the resulting outcomes while 

considering the random variability inherent 

in the process. Experimentation is a crucial 

component of scientific research, and 

computer tools like Design Expert and 

Minitab play a significant role in facilitating 

this process. These software programs aid in 

collecting data through experimental 

techniques to ensure precise polynomial 

approximations. Various types of 

experimental designs are available, including 

full factorial, Latin hypercube, central 

composite circumscribed, and central 

composite face-centred designs. 

Design Expert software was used to generate 

the experimental matrix for this 

investigation, and the central composite 

design (CCD) was selected as the 

experimental design. The CCD follows the 

mathematical process outlined in equation 

(1). 

N = 2n + 2n + k                                                                           

(1) 

Where N = Total number of experiments, n = 

number of input parameters. 

The quantity of input parameters taken into 

consideration had an impact on the choice of 

the central composite design for running 

experiments. In this research, models for all 

the responses were generated using Design 

Expert software.  

2.3 Materials and Experimental Set-up  

In the gas tungsten arc welding (GTAW) 

system, which operated within a current 

range of 150 to 200 A, thermocouples were 

affixed. This welding process was applied to 

a low-carbon steel block measuring 200 x 

200 x 20 mm³. A DCEN (Direct Current 

Electrode Negative) setup with a 4 mm-arc 

gap was employed for shielding the gas. 

Temperature measurements were taken in the 

range of 1500 to 1800 °C. W5 tungsten 
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thermocouples were used for their excellent 

resistance to high temperatures. These 

thermocouples had an overall diameter of 1.2 

mm, which included both the sleeving and 

tungsten wires. They were placed into the 

samples at a depth of 4 mm, with a diameter 

of 1.4 mm and an angle of 20°.  

2.4 Method of Data Collection 

The Design Expert software generated a 

central composite design matrix, and based 

on this matrix, twenty test runs were 

conducted. These test runs included the 

results of the weld sample, along with input 

and output parameters. The size of the data 

matrix was determined using the formula 2n 

+ 2n + k, where k stands for the number of 

center points, 2n for axial points, and 2n for 

factorial points. Subsequently, Artificial 

Neural Network (ANN) and Response 

Surface Methodology (RSM) techniques 

were used to analyze this matrix. 

2.5   Response Surface Methodology 

Engineers frequently utilize Response 

Surface Methodology (RSM) to identify the 

ideal circumstances required to carry out a 

certain activity. This involves identifying the 

input parameter values for a process that 

result in the best possible outcomes, whether 

it's minimizing or maximizing a particular 

parameter. RSM is a widely used 

optimization technique that helps engineers 

understand how a process works by utilizing 

mathematical and statistical methods to 

model and predict the desired response.  

2.6 Artificial Neural Network 

A neural network is a highly parallel and 

distributed computer system that possesses 

the capability to store experimental data for 

various applications. It functions as a data 

mining tool and is primarily designed to 

uncover hidden patterns within datasets. 

Interestingly, there are two key similarities 

between neural networks and the human 

brain. First, during the learning process 

within the network, synaptic weights are 

employed to store knowledge. These weights 

indicate the strength of connections between 

internal neurons. Second, each basic neuron 

with R inputs receives appropriate weights 

(w), and the transfer function (f) calculates 

the sum of these weighted inputs along with 

a bias term. The transfer function (f) can be 

any differentiable function used to determine 

neuron outputs. In multilayer networks, the 

log-sigmoid transfer function, often referred 

to as logsig, is a commonly employed choice. 

The sigmoid transfer function, specifically 

the log-sigmoid, generates output values that 

range from 0 to 1 as the neuron's net input 

changes from a negative number to a positive 

infinity.  

3. RESULTS AND DISCUSSION 

3.1. Presentation of results 

3.1.1.  Modelling of the Average Weight Loss 

(AWL) using Response Surface Methodology 

(RSM) 

In this research, current (I), voltage (V), and 

gas flow rate (GFR) are chosen as the input 

variables, and an effort is made to construct a 

second order mathematical relationship 

between them, coupled with one response 

variable, average weight loss using response 

surface methodology (RSM). 

The optimization model's goal was to reduce 

the average weight loss. 

The end result of the optimization method 

was to identify the current (Amp), voltage 

(Volt), and gas flow rate (l/min) ideal values 

that will minimize average weight loss. 
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To produce the experimental information 

needed for the optimization process; 

i. The central composite design 

approach (CCD) was used for the 

statistical design of the experiment 

(DOE). A statistical tool was used to 

carry out the design and optimization. 

It was decided to use Design Expert 

7.01 for this specific issue.   

ii. A second step involved creating an 

experimental design matrix with 20 

experimental runs and six (6) center 

points (k), six (6) axial points (2n), 

and eight (8) factorial points (2n).  

To validate how well the quadratic model fits 

the data in analyzing the experimental data, 

the sequential model sum of squares was 

estimated for the typical response to weight 

loss, as shown in Table 1.

 

Table  1: Sequential model sum of square for Average Weight Loss 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F-

value 
p-value  

Mean vs Total 1.26 1 1.26    

Linear vs Mean 0.0161 3 0.0054 0.8901 0.4675  

2FI vs Linear 0.0094 3 0.0031 0.4650 0.7116  

Quadratic vs 2FI 0.0857 3 0.0286 195.10 < 0.0001 Suggested 

Cubic vs Quadratic 0.0008 4 0.0002 1.80 0.2469 Aliased 

Residual 0.0007 6 0.0001    

Total 1.37 20 0.0686    

 

The sequential model sum of squares table 

illustrates how the model fit becomes better 

as more terms are added. The highest order 

polynomial where the additional terms are 

significant and the model is not aliased was 

chosen as the best fit based on the estimated 

sequential model sum of squares. Because the 

cubic polynomial was aliased, it was 

determined that it could not be used to fit the 

final model from the results of table 2. 

Additionally, it was suggested that the 

quadratic and 2FI model suited the data the 

best, which supported the adoption of the 

quadratic polynomial in this research. 

The lack of fit test was estimated for each 

answer in order to assess how well the 

quadratic model can account for the 

underlying variation present in the 

experimental data. Prediction cannot be made 

using a model with a considerable lack of fit. 

Table 2 displays the findings of the computed 

lack of fit for the typical weight reduction. 

Table 2: Lack of fit test for Average Weight Loss 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-value p-value  

Linear 0.0961 11 0.0087 131.11 < 0.0001  

2FI 0.0868 8 0.0108 162.74 < 0.0001  

Quadratic 0.0011 5 0.0002 3.39 0.1032 Suggested 

Cubic 0.0003 1 0.0003 4.97 0.0763 Aliased 

Pure Error 0.0003 5 0.0001    
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Table 3 shows the model statistics calculated for the typical weight loss response based on the 

model sources. 

 

Table 3: Model summary statistics for Average Weight Loss 

Source Std. Dev. R² 
Adjusted 

R² 

Predicted 

R² 
PRESS  

Linear 0.0777 0.1430 -0.0177 -0.2738 0.1434  

2FI 0.0819 0.2261 -0.1311 -0.7097 0.1925  

Quadratic 0.0121 0.9870 0.9753 0.9189 0.0091 Suggested 

Cubic 0.0105 0.9941 0.9813 0.3472 0.0735 Aliased 

 

The summary statistics concerning model fit 

encompass various metrics such as standard 

deviation, R-squared, adjusted R-squared, 

predicted R-squared, and the predicted error 

sum of squares (PRESS) statistic for each 

complete model. In this context, an ideal 

model is characterized by a low standard 

deviation, an R-squared value close to one, 

and a relatively low PRESS. Accordingly, 

based on the findings detailed in Table 3, the 

quadratic polynomial model is 

recommended, while it should be noted that 

the cubic polynomial model was deemed 

unsuitable due to aliasing issues.  

This choice of the quadratic polynomial 

model is further validated by assessing its 

ability to minimize average weight loss, as 

elaborated in the goodness-of-fit statistics 

presented in Table 4. 

Table 4: GOF statistics for  Average Weight Loss 

Std. Dev. 0.0121 R² 0.9870 

Mean 0.2510 Adjusted R² 0.9753 

C.V. % 4.82 Predicted R² 0.9189 

  Adeq Precision 27.3202 

The reasonably close agreement between the 

Predicted R², standing at 0.9189, and the 

Adjusted R², which is 0.9753, is noteworthy, 

with the difference between them falling 

comfortably below the 0.2 threshold. 

Moreover, the signal-to-noise ratio, as 

quantified by Adeq Precision, is notably 

favorable, registering at 27.320, well 

surpassing the desired ratio of 4. This 

signifies that the model is sufficiently robust 

and reliable for guiding explorations within 

the design space. 

A juxtaposition between the projected values 

and the actual values was done in order to 

find values or groupings of values that the 

model would not have been able to detect 

readily. This comparison is shown in Figure 

1, with a special emphasis on the average 

weight loss.  
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Figure 1: Plot of Predicted Vs Actual for Average Weight Loss 

The graph in Figure 1 shows how the dots are 

closely grouped around the fitted line. This 

shows that the model is successful in 

correctly predicting the bulk of the data 

points. 

A Cook's distance plot was created for 

various responses in the experimental data to 

look for probable outliers. Cook's distance 

estimates how the removal of a certain point 

can affect the regression. In order to rule out 

outliers, points with extremely elevated 

distance values in comparison to the rest 

should be given more attention. Figure 2 

shows the Cook's distance plot for the 

average weight loss. 

 

Figure 2: Generated cook’s distance for Average Weight Loss 

The Cook's distance plot, on the other hand, 

is shown in Figure 2, and it has 0.00 for the 

lower bound and 1.00 for the upper bound. 

Outliers are considered experimental values 

that are outside the expected range and 

require further examination. The results of 

Figures 1 and 2 imply that the 
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estimated residuals follow a distribution that 

is roughly normal. This is a good sign 

because it shows that the constructed model's 

accuracy and propensity for prediction are 

sufficient. 

Figure 3 shows 3D surface plots analyze the 

effects of voltage and current on the average 

weight loss while  Figure 4 illustrates 3D 

surface plots were created to explore the 

effects of average weight loss on current and 

gas flow rate. 

 

  

 Figure 3: Effect of voltage and gas flow rate on AWL           

 

 

Figure 4: Effect of current and gas flow rate  on AWL 
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The 3D surface plots shown in Figure 5 were 

created as follows to explore the impacts of 

voltage and gas flow rate on the average 

weight loss. Figure 6 shows the contour plots 

of the average weight loss response variable 

against the optimal value of current and 

voltage. 

  

Figure 5: Effect of voltage and gas flow rate on AWL                 Figure 6:Predicting AWL using 

contour plot 

 

3.1.2 Modelling of Weight Loss using 

Artificial Neural Network (ANN) 

The examination also held vital value in 

establishing the precise mathematical link 

between the input parameters (current, 

voltage, and gas flow rate) and the outcome 

parameter (weight loss). In the pursuit of 

attaining an optimal network structure that 

provides the highest precision in 

comprehending the input-output data 

correlation, two pivotal aspects were taken 

into account. The initial aspect encompassed 

choosing the most precise training algorithm 

or learning rule. Furthermore, the 

determination of the number of hidden 

neurons within the network was also 

contemplated. Guided by these 

considerations, a variety of training 

algorithms and different quantities of hidden 

neurons were chosen and subjected to 

experimentation. The aim was to identify the 

optimal training algorithm and the optimal 

number of hidden neurons that 

collaboratively yield the most accurate and 

efficient network configuration. However, 

this selection is based on the assessment of r2 

and MSE values. For the analysis of the 

Artificial Neural Network, MATLAB 

R2022a was employed. The data was initially 

saved in a specific MATLAB folder, after 

which it underwent normalization by being 

converted into a numeric matrix. This process 

automatically established the dataset range, 

and the import selection was employed to 

import the data into the MATLAB 

environment. 

The Levenberg-Marquardt Back Propagation 

training algorithm, known as the improved 

second-order gradient method, has been 

identified as the optimal learning rule and 

subsequently applied in formulating the 

network structure. The process of network 
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generation involved partitioning the input 

data into sets for training, validating, and 

testing. In this investigation, 70% of the data 

was allocated for network training, 15% for 

validation, and the remaining 15% for testing. 

The evaluation of the network's performance 

extended over a maximum of 1000 training 

epochs. By implementing these parameters 

and configurations, an optimal neural 

network structure was established and 

visually represented in Figure 7.  

 
Figure 7: Artificial neural network architecture 

 

The network diagram created utilizing the 

back propagation neural network and the 

artificial neural network architecture 3-15-1 

to predict weight loss is shown in Figure 8. 

 

Figure 8: Model summary for predicting weight loss 

Figure 9's network training diagram revealed 

that the network performance was of 0.0773 

Validation check of two (2) was recorded out 

of six (6). However, this is to be expected 
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given that the raw data's normalization 

resolved the weight bias issue. Figure 9 

displays a performance evaluation plot that 

depicts the development of training, 

validation, and testing. The network's 

effectiveness during each of these stages is 

shown visually in this plot. The training state 

is shown in Figure 10, which provides details 

on important variables like the gradient 

function, training gain (Mu), and validation 

tests. The training process and its connected 

aspects are clearly understood thanks to this 

thorough representation. 

  
   Figure 10: Performance curve for predicting AWL           Figure 11: Neural network training for 

predicting AWL 

 

Backpropagation is a fundamental 

technique employed within artificial neural 

networks to compute the error contribution 

of each neuron following a batch of data 

training. In technical terms, the neural 

network calculates the gradient of the loss 

function to elucidate the extent of error 

attributed to each of the selected neurons. In 

this context, lower error values are 

indicative of superior performance. The 

computed gradient value, notably small at 

0.000000002672 as depicted in Figure 11, 

signifies that the error contributions from 

these selected neurons are exceedingly 

minimal. Momentum gain (Mu) serves as 

the pivotal control parameter for the neural 

network training algorithm. It plays a 

crucial role in shaping the network's 

learning dynamics, and its value must be 

maintained below unity to ensure stability. 

The utilization of momentum gains set at 

0.0000001 underscores the network's 

remarkable capacity for accurately 

predicting weight loss. The regression plot, 

featured in Figure 12, effectively illustrates 

the correlation between the input variables 

(current, voltage, and gas flow rate) and the 

target variable (weight loss). It concurrently 

showcases the progression of training, 

validation, and testing phases, providing a 

comprehensive view of the model's 

performance throughout the different stages 

of its development and evaluation. 
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Figure 12: Regression plot showing the progress of training, validation and testing 

 

The network has been accurately trained and 

can be used to forecast weight loss, according 

to computed values of the correlation 

coefficient (R) as seen in Figure 12. 

3.2. Discussion of Result Findings 

The Response Surface methodology and 

artificial neural network techniques were 

utilized in this study to anticipate and 

optimize the average weight loss of Tungsten 

inert gas mild steel welds. The input 

parameters are current, voltage and gas flow 

rate while the response is the average weight 

loss. The connection between the parameters 

used as input and the outcome happens to be 

quadratic, as the sequential sum of square test 

for the response selected the quadratic model 

which has a p-value < 0.0001. The model 

summary statistics for all the responses have 

R2 values of about 90% and the models have 

non-significant lack of fit with p-value > 

0.005. The models all have R2 values > 0.9 

indicating the strength and how well the 

model can determine the values of the chosen 

input variables in advance that will predict 

the best values of responses for a very good 

weld, the results obtained showed that the 

variance inflation factor (VIF) was 1.00 

which is expected. Design experts 

determined that this option, which has a 

desirability rating of 0.918, is the best one. 

The study reveals the successful use of 

artificial neural networks in predicting the 

average weight loss for tungsten inert gas 

welding of mild steel plates.   

4. CONCLUSION 

The average weight loss of a fabricated 

engineering structure is a critical factor 

affecting its usable service life. In this 

research, the development of numerical 

models using response surface methodology 

and artificial neural network to optimize and 

predict the average weight loss, considering 

current, voltage and gas flow rate as input 

factors. The experimental design adopted 

was the central composite design, which was 

generated using the design expert software 
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(version 13.0) the RSM analysis produced 

optimal solutions with current of 160.000 

amps, voltage of 21.280 volts, gas flow rate 

of 14.667lit/min to produce a welded joint 

with average weight loss of 0.236 and this 

was obtained at a desirability value of 0.918. 

The artificial neural network model was also 

employed to predict the output parameters 

and compared with the RSM methodology. 

From the results obtained the Response 

Surface Methodology is selected as the better 

predictive model over the Artificial Neural 

Network because it has a higher coefficient 

of determination. 
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