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ARTICLE INFO 

 

ABSTRACT 

The Internet as an effective model to advance resource sharing has consequently, led to the 

greater proliferation of adversaries, with unauthorized access to network resources. 

Adversaries achieve fraud activities via carefully crafted attacks of large magnitude 

targeted at personal gains and rewards. With a cost of over $1.3Trillion lost globally to 

financial crimes and the constant rise in fraudulent activities vis the use of credit-cards, 

financial institutions and stakeholders must explore and exploit improved measures to 

actively secure client data and funds. Financial services must harness the creative mode via 

machine learning schemes to help effectively manage such threats. Our study thus, proposes 

a cybersecurity machine learning XGBoost ensemble to detect fraud activities. This scheme 

aim to equip a system with altruistic knowledge to help detect credit card fraud 

transactions. Results show ensemble effectively differentiates fraudulent from genuine card 

transactions with a model accuracy of 99.1%. 
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1. INTRODUCTION 

Financial crimes cost the global financial 

services over $42Trillion in 2022 – with these 

numbers always rapidly growing (Ejeh et al., 

2024). Thus, anticipating growth in financial 

fraud, financial services firms must diversify 

via applying innovative measures to mitigate 

fraud (Akazue, Edje, et al., 2024; Akazue, 

Okofu, et al., 2024). If a system is abused, a 

method is needed to detect it. Detection aims 

to identify fraud cases via anomaly detection 

in user behaviour and data analysis (Aghware, 

Adigwe, et al., 2024; Albladi & Weir, 2018; 

Algarni et al., 2017). Its management must 

advance measures to curb such acts (Al-Qatf 

et al., 2018; Altman, 2019), combining the 

anomaly-correlation and analysis (Ifioko et 

al., 2024; Obasuyi et al., 2024) to yield early 

detection with enhanced user protection, and 

reduced risk (Aghware, Ojugo, et al., 2024; 

Amalraj & Lourdusamy, 2022; Ojugo & 

Ekurume, 2021a, 2021b).  

The adoption today, of credit cards along 

with the added functionality of inclusiveness 

it proffers – has both, given more comfort to 

users, and attracted malicious adversary that 

are now interested in personal gains. Credit-

cards have become easy targets of attack – as 

such crimes are discovered weeks afterwards 

(Ojugo & Yoro, 2013, 2020, 2021b, 2021a). 

It is achieved via: (a) card copy to steal user 

privacy data (on need), and (b) vendors extort 

money without a card-holder knowing (Yoro, 

Aghware, Malasowe, et al., 2023). With lose 

of money by banks, card holders are made to 

reimburse such loss via reduced benefits and 

higher interests. Thus, it is in the best interest 

of both users and banks to reduce card fraud 

by investing wisely into detection schemes 

(Akazue et al., 2023; De Kimpe et al., 2018). 

http://fupre.edu.ng/journal
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The dynamism in card fraud detection 

continues to puzzle administrators as these 

adversaries are continually poised with rising 

quest to tweak schemes to help them evade 

detection as businesses are poised to curb the 

threats. With such task as often inconclusive 

and continuous feat (Okonta et al., 2013, 

2014) – many studies have been deployed to 

help with both its detection and prevention. 

Studies show that degraded performance in 

models can be attributed to either conflicts on 

heuristics, feature selection, imbalanced data, 

data encoding, (Goel et al., 2017; Halevi et al., 

2013; Li et al., 2021). Even with intelligent 

classifiers, card-fraud persists as adversaries 

will continually evolve their exploit mode 

(Ako et al., 2024; Ojugo et al., 2021b; Okpor 

et al., 2024). Fraudsters will continually seek 

more efficient mode with improve dynamism 

to evade security measures and firewalls that 

profiles user behaviour at entry point, and 

minor hacks to steal client valuable data. 

Fraud monitor offers a combined risk monitor 

and detection analysis (Barlaud et al., 2019). 

Such schemes must gather data intelligently 

to enhance client protection, and reduce risks 

of fraud susceptibility (Gratian et al., 2018; 

Ojugo et al., 2014; Wemembu et al., 2014).  

We seek to address these by adequately 

training our heuristic to devoid of structural 

conflicts and poor generalization using the 

XGBoost to detect credit card-fraud (Gao et 

al., 2021; Ojugo & Otakore, 2020b). 

 
1.1. Credit-Cards and Fraud Detection 

Fraud illegally disposes an unsuspecting 

user of valuable assets wilfully obtained by 

an adversary via intended misrepresentation. 

From a criminal view, fraud charges may 

theft, larceny, and embezzlement (Tingfei et 

al., 2020). It is a state where an unsuspecting, 

vulnerable user relies/depends on the false 

representative claims issued by an adversary 

for personal benefits (Huang et al., 2021). 

Fraud is often perpetuated by either an insider 

in an organization (as insider threat), or via 

an external user to compromise the workings 

of a system in an organization (Edirisooriya 

& Jayatunga, 2021; Vågsholm et al., 2020). 

Benchaji et al. (2022) Fraud either benefit an 

individual, or the organization itself – on a 

whole (Benchaji et al., 2021; Yoro, Aghware, 

Akazue, et al., 2023). 

Credit-cards have today brought banks 

closer to her clients, and provisioned more 

financial inclusion for customers. It has also 

advanced and attracted malicious attackers 

for gains (Fatahi et al., 2016). A critical 

reason for adversaries, is that asides being an 

easy target – credit card crimes if committed, 

go unnoticed weeks after; And, in some cases 

they go unreported. Successful card-fraud 

methods include(s): (a) card cloning having 

acquired a compromised user confidential 

data, and (b) finance houses overcharge card 

holder even without their awareness (Ojugo, 

Akazue, Ejeh, Odiakaose, et al., 2023; Ojugo, 

Eboka, et al., 2015b). When banks lose 

money to fraud, cardholders are made to 

repay such loss wholly/partly, via either 

reduced benefits and/or higher interest rates. 

Thus, it is best for both cardholders and banks 

to take necessary actions to reduce card fraud 

(Akazue, Edje, et al., 2024; Laavanya & 

Vijayaraghavan, 2019; Malasowe, Aghware, 

et al., 2024; Malasowe, Ojie, et al., 2024; 

Malasowe, Okpako, et al., 2024; Okofu et al., 

2024). 

Eboka et al., (2020) proposed effective 

ensemble to extract signatures for detecting 

polymorphic worms to achieve their zero-day 

detections. This mode of analysis is called the 

position aware distribution signature (PADS). 

It utilizes worms by monitoring unexpected 

outgoing connections from an inbound to an 

outbound honeypot to easily identify worms. 

PADS was designed to increase the chances 

of detecting polymorphic worms by allowing 

possible variations in a signature, instead of 

all fixed symbols in the existing signatures. 

To control variations in each position in 

signatures, PADS uses frequency distribution 

to specify what variations are likely possible 

in each position in a signature string (Eboka 

& Ojugo, 2020). And is supported by 

(Mustofa et al., 2023; Oyemade et al., 2016).  

Ileberi et al. (2022) trained RBF model 

with 7-parameters to recognize attack from a 
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data packet, sent via filter alarm. Their design 

created profiles using stream sample mode. 

Their result shows we can: (a) accurately 

cluster and quantify packets as a profile, and 

(b) we can listen to low-error rates anomalies 

and correctly identify. Their study concludes 

that as routers listen and trace packet 

exchange, they harness key parameters and 

underlying features of interest for each packet; 

And thus, allows the model to create the 

corresponding profiles that in turn, improved 

their detection rate (Ileberi et al., 2022). Also, 

Aghware et al. (2023) used a deep learning 

reinforcement rule-based ensemble with 7-

feats to detect packets traffic anomaly using 

profiling technique. Unsupervised ensemble 

seek to capture and profile packets explored 

to group (and classified into classes), with 

packet patterns in a traffic session (Aghware 

et al., 2023a, 2023b). 

 

A remarkable innovation and landmark of 

digital transformation is the proliferation of 

credit-card(s) use and adoption in a variety of 

exchange platforms. This revolution also 

ushered forth the problem of credit card fraud, 

wherever clever, complicated methods are 

used to steal money (Abbasi et al., 2016; 

Ojugo et al., 2012). To implement schemes 

that ensure data security, confidentiality, non-

repudiation, and privacy – even when faced 

with the continued attempts by adversaries to 

evade detection, has further advanced many 

studies which have also rippled across the 

following challenges as thus (Atuduhor et al., 

2024; Chibuzo & Isiaka, 2020; Malasowe et 

al., 2023; Ojugo & Eboka, 2018a, 2021) as: 

1. Constant revenue loss by banks alongside 

a variety of the hidden charges as accrued 

to clients (Brizimor et al., 2024). 

2. The rise in adoption of e-commerce vis-

à-vis the adoption of credit-card to foster 

financial inclusitivity has left more users 

complacent with the seamless transaction 

to buy and sell virtually. Adversaries are 

always steps ahead of security experts 

(Otorokpo et al., 2024). 

3. Adversaries continue to leverage on user-

trust, susceptibility behaviours cum traits 

(i.e. phishing) to commit fraud – since by 

nature, users yearn to improve their trust 

and dependence on techs that eases asnd 

improves their living. The need to protect 

client assets via the implementation of 

fraud detection schemes has become both 

critical and paramount. 

4. The adoption of such techniques are often 

hampered due to the limited nature of 

fraud dataset and since, it is also very 

much unwise to describe in great details 

– the workings and structure of such fraud 

detection techniques and ensemble over 

public as these can arm adversaries with 

the needed knowledge to evade detection. 

5. Issue of degraded performance is often 

triggered by the improper selection of 

feature, mismatched features, encoding 

of data, structural dependencies conflict, 

the use of non-optimized dataset vis-à-vis 

its lack thereof. Eliminating ambiguities, 

noise and partial truth further improve the 

classification properties of an ensemble. 

6. The presentation of censored results and 

limited availability of datasets – has often 

hampered the performance of detection. 

Also, with the available dataset rippled 

with noise, partial truth, ambiguities, and 

imprecision the schemes must resolved in 

order to arrive at an optimal solution. 

7. Card fraud can persist even with adoption 

of dynamic classifiers. So, new schemes 

must be able to address optimization tasks 

via learning approaches to yield ensemble 

via exploiting historic (numerical) dataset. 

 
2. MATERIALS AND METHODS 

2.1. Dataset Gathering 

A major issue in the design and model of such 

system is appropriate retrieve properly 

formatted dataset for the task at hand. Dataset 

used for training (to fit the model) must have 

the requisite data features and parameters; 

Else such a dataset is said to be imbalanced 

(Al-Qudah et al., 2020; Maya Gopal P S & 

Bhargavi R, 2019; Taravat & Del Frate, 2013). 

We adopt Hochschule IDS datasets (CIDDS-

2022) anomaly transaction dataset, split with 

training 70%, and testing 30% using 8-feats 
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to adjust weights and coefficients as Table 1: 

 

Table 1. Selected Features and Data Type 
Features Format Data Types 

Source IP a.b.c.d Object 

Source Port Numeric Integer 

Destination IP a.b.c.d Object 

Destination Port Numeric Float 

Protocol String Object 

Duration H:M:S Float 

Packets Numeric Integer 

Attack Type String Object 

 

2.2. Encoding Scheme 

Unclassified and unformatted data are 

often ambiguous, incomplete, rippled with 

noise, imprecise and inconsistent. Encoding 

seeks to filter the dataset, mapping it unto the 

required format the model can easily 

understand. To encode the selected feats, we 

transform our dataset using the feats of 

interest as in table 1. This mode will seek to 

modulate the raw data unto the require 

dataset – so that data gathered from varying 

sources, is adequate for analysis. We employ 

data type in Pandas Library displayed by 

listing 1 algorithm (Ojugo et al., 2024; Ojugo 

& Otakore, 2021; Ojugo & Oyemade, 2021). 

 

2.3. Deep Learning Approach 

We adopt the extreme boosting algorithm 

with the following steps: 

1. Step 1: Data Collection/Clean: With data 

recorded during production – we used the 

Google Play Scraper for Python to extract 

as in (Sunarjo et al., 2023). It is cleaned 

via pre-processing to yield a restructured 

dataset (G. Bhati, 2019; Ojugo, Akazue, 

Ejeh, Ashioba, et al., 2023; Ojugo, Ejeh, 

Odiakaose, Eboka, & Emordi, 2023; 

Ojugo, Odiakaose, Emordi, Ako, Adigwe, 

et al., 2023; Omede et al., 2024). 

2. Step 2: Machine Learning Heuristic – We 

used eXtreme Gradient Boosting to help 

us effectively classify data-points. The 

Extreme Boosting (XGBoost) is a 

decision tree ensemble that leverages on 

a scalable Gradient Boost model (Paliwal 

et al., 2022). It becomes quite efficacious 

and stronger as it combines weak learners 

over a series of iteration to find an 

optimal fit solution. We achieved this via 

an additional expansion of its objective 

function by minimizing the loss function 

to create its variant used to control the 

trees’ complexity. XGBoost yields better 

optimal fit by combining the predictive 

power of weak-learners (that contribute 

knowledge about task) to the ensemble 

(Bentéjac et al., 2019), and thus, yields a 

stronger learner. For each candidate to be 

trained xi and its corresponding yi – we 

use XGBoost to predict outcome using 

Equation 1 (Allenotor et al., 2015; Allenotor 

& Ojugo, 2017; Safriandono et al., 2024; 

Setiadi et al., 2024): 
 

�̂�𝑖
𝑡 = ∑ 𝑓𝑘

𝑡

𝑘=1

(𝑥𝑖) =  �̂�𝑖
𝑡 + 𝑓𝑘(𝑥𝑖)         (1) 

 

To yield a better outcome, we expand the 

objective function via a loss function 

l( 𝑌𝑖
𝑡 , �̂�𝑖

𝑡) and its regularization term Ω(𝑓𝑡). 

These ensures that overtraining does not 

occur, ensures the training data are fitted 

well, and it re-calibrates the solution to 

ensure they are within the upper and 

lower bounds of solution. Regularization 

term ensures the tree complexity is fit 

appropriately. We tune a loss function to 

ensure ensemble yields higher accuracy. 

We tune the regularization terms to 

ensure our ensemble is simpler to avoid 

parameter overfitting as in Equation 2. 
 

𝐿𝑡 = ∑ 𝑙

𝑛

𝑖 = 1

(𝑌𝑖
𝑡 ,  �̂�𝑖

𝑡−1 + 𝑓𝑘(𝑥𝑖) ) +  Ω(𝑓𝑡)       (2) 

 

3. Step 3: Hyper-Parameter Tuning controls 

how much of the tree complexity and its 

corresponding nodal weights need to be 

adjusted in place of gradient loss. The 

lower the value, the slower we travel on a 

downward slope. It also ensures how 

quickly a tree abandons old beliefs for 

new ones during the training. As the tree 

learns – it quickly differentiates between 

important feats and otherwise. A higher 

learning rate implies the tree can change, 

learn newer features as well as adapts 
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flexibly, and more easily. Ensemble uses 

the regularization term to ensure the 

model changes quickly, only to values 

that are within the lower and upper 

bounds. The ensemble does this to ensure 

that it adequately adjusts its learning rate 

to avoid over-fit and overtraining. Hyper-

parameters tuned includes max_depth, 

learning_rate and n_estimator. For best 

performance, XGBoost is carefully tuned 

via these feats (Ojugo et al., 2015; Ojugo, 

Ugboh, Onochie, Eboka, et al., 2013; 

Ojugo & Eboka, 2014, 2018b; Ojugo & 

Otakore, 2018; Omoruwou et al., 2024). 

4. Cross-Validation/Retrain in ML schemes 

estimates the learned skills of a heuristic 

on unseen data; while, evaluating model's 

performance about its accuracy on how 

well it has learned the underlying feats of 

interest via resampling technique. At re-

train, we choose various data partitions to 

help a model devoid of overfit. Here, we 

use stratified k-partitions to rearrange the 

data to ensure that each, properly repre-

sents the whole dataset) as in Listing 1 

(Camargo & Young, 2019; Ojugo et al., 

2021a; Ojugo & Eboka, 2020; Oladele et 

al., 2024; Rukshan Pramoditha, 2020). 

 

 
Figure 1. Extreme Gradient Boosting Ensemble with sources 

 
3. RESULT FINDINGS & DISCUSSION 

3.1. Data Cleaning and Pre-Processing 

We apply pre-processing from (Ojugo & 

Nwankwo, 2021) and visualize the data. Thus, 

we mine the relations for credit card fraud via 

the use of cue (Rathi & Pareek, 2013; Yao et 

al., 2022), which seeks redirect the ensemble 

toward generated rules, classified into fraud 

or genuine classes (Akazue et al., 2022, 2023). 

 

3.2. Training Phase 

Here, we partition the retrieved dataset 

into 75 percent training data, and 25 percent 

test data. For the training dataset, we used 

6,520 rows, and a test dataset of 2,173 rows. 

We then perform feature extraction using the 

TF-IDF vectorization method – which helps 

the ensemble to effectively convert our 

retrieved text contents into vectors. Also, we 

used Python’s ScikitLearn TfidfVectorizer 

function to extract the desired features of 

interest – as defined in our ensemble. We then 

train the model using our train dataset. 

Using hyper-parameters as in table 2, the 

ensemble effectively classified rules with a 

0.97 (i,e, 97%), which agrees with (Oyemade 

& Ojugo, 2020, 2021). It effectively compute 

disparities in prediction accuracy for false-

positives, true-negative, false-negative, and 

true-negatives (Maya Gopal & Bhargavi R, 

2018; Muslikh et al., 2023; Yuan & Wu, 2021; 

Zareapoor & Shamsolmoali, 2015). 

 

Table 2. Hyper-Parameter Tuning 
Parameters Trial-n-Error Best 

Learning Rate [0.05, 0.1, 0.2, 0.3, 0.5, 0.75] 0.2 
N_Estimators [100, 200, 300, 500, 700, 800] 500 
Max-Depths [1, 2, 4, 5, 6, 8, 10] 6 

 

We use trial-n-error to tune its weight for 

optimality, and prevent ensemble from poor 

generalization of over-train and overfit. Thus, 

for hyper-parameters using the trial-and-error 

mode, we observe that our best-fit values for 

training of learning_rate of 0.2, n_estimators 

as 500, and max_depth of 6 (Muslikh et al., 

2023; Ojugo, Yoro, Oyemade, et al., 2013; 

Ojugo, Yoro, Yerokun, et al., 2013). 

 

3.3. Ensemble Performance 

Results from table 3 shows that of the 

57,345-instances retrieved from dataset with 

23-fields (pre-processed), 22-of-the-30 data 

were correctly classified (i.e. from test data) 

whereas 52,560 cases are genuine with over 
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5,411 benign cases as in first class labelled 0. 

Ensemble correctly identified 5,210-cases as 

benign true-positive instance; 

The ensemble on retraining over a series 

of iterations (movement) yields an accuracy 

prediction of 0.991 (i.e. 99.1%) in detecting 

fraudulent transactions from genuine ones as 

in iteration 7 and 19 respectively. But, 8-out-

of-30 cases were incorrectly classified as 

genuine transactions for the false-positives in 

class-1 (Ojugo & Otakore, 2020a). Also, 276-

cases were incorrectly identified as fraud 

transactions as false-negative, and 233-cases 

correctly identified malicious instances of 

them were marked as true-negative. 

 

Table 3. Hyper-Parameter Tuning 
Iteration F1 Transaction Confusion 

Matrix 

Attack 

1 0.972 0.24069543 TP Yes 

2 0.981 0.92057455 TP Yes 

3 0.979 1.19477387 FN Yes 

4 0.978 0.54475628 FN Yes 

5 0.831 0.54754147 TP No 

6 0.901 1.49257306 FN No 

7 0.991 1.68077918 TP Yes 

8 0.809 1.46754675 TP No 

9 0.902 0.98409124 TP Yes 

10 0.917 1.58973958 TP Yes 

11 0.989 1.19001043 FN Yes 

12 0.971 0.73513175 TP Yes 

13 0.940 1.47307977 TP No 

14 0.902 1.91412663 TP Yes 

15 0.945 0.68066651 TP Yes 

16 0.967 0.78385333 FN Yes 

17 0.949 0.95404663 FN Yes 

18 0.982 0.76097431 TP No 

19 0.991 1.25818485 TP No 

20 0.812 1.34559804 FN Yes 

21 0.839 0.9708285 TP Yes 

22 0.912 1.42120613 TP No 

23 0.900 1.41576289 TP Yes 

24 0.891 1.25585408 FN Yes 

25 0.899 1.20401244 TP Yes 

 

To compute accuracy of the ensemble – we 

evaluate its performance to yield figure 2 as 

the confusion matrix. The Figure 2 shows that 

the ensemble yields performance of 99.1% 

classification accuracy with an improvement 

of 39% that agrees with (Ojugo et al., 2015, 

2015; Ojugo & Okobah, 2017, 2018b, 2018a). 

 

 
Figure 2. Model Accuracy prediction 

 
4. CONCLUSİON 

The proposed ensemble has a total of 56-

rules were generated. Top rules were found to 

have fitness range of [0.809, 0.991] and are 

estimated effective for classification of such 

anomaly transaction with records retrieved 

via spatial process. It implies that achieving a 

set of good rules – is much better than single 

optimum rule, which in turn is better for such 

cluster, and profile dataset (Okobah & Ojugo, 

2018; Yoro & Ojugo, 2019a, 2019b). 

The war against intrusion is a concerted 

effort (Ojugo, Eboka, et al., 2015a) as many 

detection filters and schemes do profile user 

transaction requests with feats of interest to 

analyse each profile, and pro-actively decide, 

if a profile packet data is compromised vis-à-

vis yield safety actions as further measures. 

Errors of misclassification spurs performance 

degradation (Ojugo, Abere, Orhionkpaiyo, 

Yoro, et al., 2013), and the needed ensemble 

must effectively group user request profiles 

(into various classes) with zero tolerance for 

error (Broadhurst et al., 2018; Ojugo & 

Eboka, 2019; Ojugo & Otakore, 2020c).  

Our confusion matrix shows that model 

was found to have a sensitivity value of 0.81, 

specificity 0.08, and prediction accuracy of 

0.991 with an improvement rate of 0.39 for 

data that were not originally used to train the 

model (Verma et al., 2018; Yan et al., 2018; F. 

Zhang & Lian, 2009; W. Zhang et al., 2015). 
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