

*Corresponding author, e-mail: ugbene.ifeanyi@fupre.edu.ng

DIO
©Scientific Information, Documentation and Publishing Office at FUPRE Journal

Research Article / Review Article FUPRE JOURNAL 9(1):01-13(2025)

 FUPRE Journal

 of

Scientific and Industrial Research
ISSN: 2579-1184(Print) ISSN: 2578-1129 (Online)

http://fupre.edu.ng/journal

Modeling Meiotic Rearrangements: Using Dynamic Programming to Elucidate the Role

of DNA Alignments in Cilliate Reproduction

OSANAKPA, R. O. 1, , UGBENE, I. J. 2, *
1,2Department of Mathematics, Federal University of Petroleum Resources, Effurun, Delta State

ARTICLE INFO

ABSTRACT

Dynamic programming algorithms are powerful tools for analyzing complex

biological data, including DNA sequences. In this study, we employed a

combination of global and local alignment algorithms, affine gap and star

alignment algorithms, and multiple alignment algorithms to analyze DNA

sequences obtained from different ciliates during meiotic reproduction. Our

analysis revealed that these algorithms were effective in identifying conserved

regions and patterns in the DNA sequences, and in constructing phylogenetic trees

that reflected the evolutionary relationships among the sequences. Specifically, we

found that the global alignment algorithm was useful for identifying long stretches

of identical nucleotides, while the local alignment algorithm was effective in

detecting shorter, conserved regions. The affine gap model allowed us to account

for the presence of gaps in the sequences, while the star alignment algorithm

enabled us to identify conserved regions that were shared among multiple, closely

related sequences. Finally, the multiple alignment algorithm allowed us to

compare the DNA sequences of multiple ciliates simultaneously, and to identify

conserved regions that were shared among all of the species studied. Our findings

have important implications for our understanding of the evolution and diversity

of ciliates and other organisms, and highlight the utility of dynamic programming

algorithms in analyzing complex biological data. Overall, our study provides a

framework for using dynamic programming algorithms to analyze DNA

sequences, and demonstrates the potential of these algorithms to provide insights

into the genetic factors that underlie evolution and diversity in a wide range of

organisms.

Received: 20/11/2024

Accepted: 20/03/2025

Keywords

Algorithm, Cilliate

reproduction,
Deoxyribonucleic acid

(DNA), Genetic

factors, Meiotic
rearrangement

1. INTRODUCTION

The ciliates are a group of alveolates

characterised by the presence of hair-like

organelles called cilia, which are identical

in structure to eukaryotic flagella, but are in

general shorter and present in much larger

numbers, with a different undulating

pattern than flagella. Cilia occur in all

members of the group (although the

peculiar Suctoria only have them for part of

their life cycle) and are variously used in

swimming, crawling, attachment, feeding,

and sensation. Ciliates are an important

group of protists, common almost

anywhere there is water—in lakes, ponds,

oceans, rivers, and soils, including anoxic

and oxygen depleted habitats(Rotterov´a et

al. (2022)). About 4,500 unique free-living

species have been described, and the

potential number of extant species is

estimated at 27,000–40,000, Foissner and

Hawksworth (2009). Included in this

number are many ectosymbiotic and

http://fupre.edu.ng/journal

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 2

endosymbiotic species, as well as some

obligate and opportunistic parasites. Ciliate

species range in size from as little as 10 µm

in some colpodeans to as much as 4 mm in

length in some geleide, and include some of

the most morphologically complex

protozoans, Lynn (2008); Nielsen and

Kiørboe (1994). Unlike most other

eukaryotes, ciliates have two different sorts

of nuclei: a tiny, diploid micronucleus (the”

generative nucleus”, which carries the

germline of the cell), and a large,

ampliploid macronucleus (the” vegetative

nucleus”, which takes care of general cell

regulation, expressing the phenotype of the

organism), (Archibald et al. (2017)). The

latter is generated from the micronucleus by

amplification of the genome and heavy

editing. The micronucleus passes its genetic

material to offspring, but does not express

its genes. The macronucleus provides the

small nuclear RNA for vegetative growth,

(Archibald et al. (2017); Prescott (1994)).

Division of the macronucleus occurs in

most ciliate species, apart from those in

class Karyorelictea, whose macronuclei are

replaced every time the cell divides, (Lynn

(2008)). Macronuclear division is

accomplished by amitosis, and the

segregation of the chromosomes occurs by

a process whose mechanism is unknown,

(Archibald et al. (2017)). After a certain

number of generations (200–350, in

Paramecium aurelia, and as many as 1,500

in Tetrahymena (Lynn (2008))) the cell

shows signs of aging, and the macronuclei

must be regenerated from the micronuclei.

Usually, this occurs following conjugation,

after which a new macronucleus is

generated from the post-conjugal

micronucleus, (Archibald et al. (2017)).

Pevzner et al. (2001) introduces the concept

of using Eulerian paths to address the

challenge of DNA fragment assembly. The

authors propose an algorithm that

reconstructs the original DNA sequence

from a collection of short DNA fragments.

While not directly related to ciliate

reproduction, this work highlights the

importance of computational methods in

understanding and analyzing DNA

rearrangements. Dobzhansky (1933)’s

study on the sterility of interracial hybrids

in Drosophila pseudoobscura provides

insights into the genetic basis of

reproductive isolation and speciation.

Although not specific to ciliates, this article

emphasizes the role of genetic

incompatibilities resulting from DNA

rearrangements in reproductive barriers and

evolutionary processes. Orr (1996)

explores the contributions of Dobzhansky

and Bateson to our understanding of genetic

mechanisms underlying speciation. The

author emphasizes the role of genetic

changes, including DNA rearrangements,

in driving reproductive isolation and the

formation of new species. This work

provides a broader context for

understanding the evolutionary

implications of DNA rearrangements in

ciliate reproduction. Pevzner and Tesler

(2003) investigates genome rearrangements

in mammalian evolution, specifically

focusing on the human and mouse

genomes. By studying large-scale DNA

rearrangements, the authors shed light on

the evolutionary processes that shape the

organization of genomes. This research

provides insights into the broader

implications of DNA rearrangements in the

context of evolutionary biology. Biller et al.

(2016) addresses the challenge of

estimating rearrangement distances

between genomes, considering the fragility

of specific genomic regions. By accounting

for fragile regions that are prone to DNA

rearrangements, the authors propose an

improved method for accurately measuring

the distance between genomes. This work

highlights the importance of considering

the structural properties of genomes in the

study of DNA rearrangements.

Yancopoulos et al. (2005) presents an

efficient algorithm for sorting genomic

permutations, which involve

rearrangements such as translocations,

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 3

inversions, and block interchanges. While

not specific to ciliate reproduction, this

work contributes to the computational

methods used to analyze DNA

rearrangements and can inform our

research on modeling meiotic

rearrangements in ciliates. Beermann

(1977)’s study on the diminution of

heterochromatic chromosomal segments in

Cyclops provides insights into the DNA

rearrangements that occur during the

development of this crustacean. The

research highlights the process of segment

elimination, which involves the removal of

specific chromosomal segments during the

formation of somatic cells. Although not

specific to ciliates, this work contributes to

our understanding of DNA rearrangements

in different organisms. Gerbi (1986)

explores the unusual chromosomal

movements in the spermatocytes of sciarid

flies. These flies exhibit complex and

dynamic chromosomal movements during

meiosis, including the formation of

chromosomal bouquets and the movement

of chromosomes to specific regions of the

nucleus. They suggest that these

movements may play an essential role in

ensuring proper chromosomal segregation

during meiosis. The paper provides a

detailed analysis of the chromosomal

movements in sciarid flies and offers

valuable insights into the mechanisms that

govern chromosomal segregation in these

organisms. Prescott (1994) focuses on the

DNA of ciliated protozoa. These organisms

have highly complex genomes that undergo

programmed genome rearrangements

during their life cycle. Prescott provides an

overview of the unique features of the DNA

of ciliated protozoa, including its structure

and organization, and the mechanisms that

govern genome rearrangement. The paper

also highlights the potential of ciliated

protozoa as model systems for studying

genome dynamics. Understanding the

genome rearrangements in ciliated protozoa

can provide insights into the evolution of

complex genomes and the mechanisms that

drive genome evolution. Smith et al. (2012)

discusses the genetic consequences of

programmed genome rearrangement in

various organisms. The authors describe

how these rearrangements can result in the

creation of new genes, the deletion of

existing genes, and the formation of

chimeric genes. They also discuss the

potential impact of these rearrangements on

genome evolution and the development of

new species. The paper highlights the

importance of understanding the

mechanisms that govern genome

rearrangements in order to better

understand the evolution of complex

genomes. Stephens et al. (2011) describes a

catastrophic event that led to massive

genomic rearrangement in a single cancer

cell. The authors used whole-genome

sequencing to identify more than 10,000

rearrangements in a single cell, which is

unprecedented in cancer genomics. The

study provides important insights into the

mechanisms of genome instability in

cancer. Aguileta et al. (2014) investigated

the variability of mitochondrial gene order

among fungi. Mitochondrial genomes are

known to be highly variable in terms of

gene order and content, and this study

provides a comprehensive analysis of this

variability in fungi. The authors found that

the gene order is highly variable even

among closely related species, and that this

variability is due to frequent

rearrangements and gene loss. Lang et al.

(2014) discovered massive programmed

translational jumping in mitochondria. The

authors found that mitochondrial ribosomes

can skip large regions of the genome during

translation, resulting in the production of

truncated proteins. This finding challenges

the traditional view of mitochondrial

translation and provides new insights into

the evolution of mitochondrial genomes.

Ehrenfeucht et al. (2004) discussed the

computation that occurs in living cells

during gene assembly in ciliates. The

authors provide a comprehensive overview

of the molecular mechanisms involved in

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 4

gene assembly, and discuss how these

mechanisms can be modeled using formal

language theory.

2. MATERIALS AND METHODS

New DNA, RNA, and protein sequences

emerge from existing sequences rather than

being created from scratch by nature. This

fundamental principle forms the basis of

sequence analysis. If we can establish a

connection between a newly discovered

sequence and a sequence for which some

information (such as structure or function)

is already known, it is likely that this known

information also applies, to some degree, to

the new sequence. We consider any two

related sequences to have originated from a

shared ancestral sequence during the

process of evolution and refer to them as

homologous sequences. Seeking sequence

similarity is the first step in deducing

homology. Determining whether two

sequences are similar or not can be

challenging when they are lengthy. One

must correctly align them in order to

determine whether they are comparable.

Sequences can experience substitutions, or

the replacement of one residue by another,

when they evolve from a common ancestor.

In addition to substitutions, sequences can

collect a number of events of two other

types during evolution: insertions, which

occur when new residues enter in a

sequence in addition to the ones that

already exist, and deletions, which occur

when some residues disappear. Residues

must therefore be permitted to align not just

to other residues but also to gaps in order to

achieve the best possible alignment

between two sequences. An insertion or

deletion event is indicated by the existence

of a gap in an alignment. Take into

consideration, for instance, the next two

incredibly short nucleotide sequences, each

with just seven residues:

 𝑥 ∶ 𝑇𝐴𝐶𝐶𝐴𝐺𝑇

 𝑦 ∶ 𝐶𝐶𝐶𝐺𝑇𝐴𝐴 (1)

If gaps in alignments are avoided, there is

only one method to align the sequences

because they are of the same length:

 𝑥 ∶ 𝑇 𝐴 𝐶 𝐶 𝐴 𝐺 𝑇

 𝑦 ∶ 𝐶 𝐶 𝐶 𝐺 𝑇 𝐴 𝐴

(2)

There are numerous alignments that are

feasible, though, if gaps are allowed.

Specifically, the alignment that follows

appears to be far more instructive than the

one that comes before it:

 𝑥 ∶ 𝑇𝐴𝐶𝐶𝐴𝐺𝑇_ _

 𝑦 ∶ 𝐶_𝐶𝐶_𝐺𝑇𝐴𝐴

(3)

The subsequence CCGT may be an

evolutionarily conserved region, according

to alignment (2.1), which suggests that both

x and y may have developed from a shared

ancestral sequence that contained the

subsequence CCGT in the right places.

Here’s another alignment that seems

plausible:

 𝑥 ∶ 𝑇 𝐴 𝐶 𝐶 𝐴 𝐺 𝑇_ _

 𝑦 ∶ _ _ 𝐶 𝐶 𝐶 𝐺 𝑇 𝐴 𝐴

(4)

In what way is alignment (3) superior to

alignment (4)? Are certain alignments

better than others? In order to respond to

these inquiries, we must be able to assess

every potential alignment. The best or most

ideal alignments are therefore those with

the highest score (although there may be

multiple of these alignments).

 The most common scoring

techniques make the assumption that each

column in an alignment is independent of

the others and assign the alignment’s

overall score to equal the sum of the scores

of its individual columns. With a,b ∈ Q,

where Q is either the 4-letter DNA or RNA

alphabet or the 20-letter amino acid

alphabet, depending on the type of

sequences that we are interested in aligning,

one only needs to specify the scores

𝑠(𝑎, 𝑏) = 𝑠(𝑏, 𝑎) and the gap penalty

𝑠(−, 𝑎) = 𝑠(𝑎, −), for such schemes.

Naturally, the scoring system affects which

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 5

alignments between two sequences are

optimal. The optimal alignments for two

distinct scoring systems could be very

different from one another. One can set

𝑠(𝑎, 𝑎) = 1(the match score), 𝑠(𝑎, 𝑏) =
 −1 if a=b (the mismatch score), and

s(−,a)=s(a,−)= −2 (the gap penalty) as an

example of a scoring scheme. It is crucial to

remember, nevertheless, that for a scoring

system to result in a logical alignment, it

must be biologically relevant. A strategy

like this needs to account for the constraints

on sequence evolution. For instance, by

making the score of a continuous gap

region an affine function of its length

(notice that in the example above, the score

of a gap region is linear in its length), many

popular scoring schemes establish some

degree of dependence among the columns

in an alignment. A substitution or scoring

matrix is formed by the numbers 𝑠(𝑎, 𝑏).

For sequence comparison to be effective,

substitution matrices must be symmetric

and have a few other requirements.

 2.1 Dynamic Programming: Global

Alignment

The linear gap model (𝑠(−, 𝑎) = 𝑠(𝑎, −) =
−𝑑 for 𝑎 ∈ 𝑄, with 𝑑 > 0, is assumed in

this section so that the score of a gap area

of length 𝐿 equals −𝑑𝐿 and propose the

Needleman and Wunsch (1970) algorithm,

which is able to identify all optimal global

alignments in an algorithmic fashion (there

are often multiple such alignments).The

goal is to take subsequences that have

optimal alignments and turn them into an

ideal alignment. Dynamic programming

algorithms are commonly defined as

algorithms that accomplish optimization by

means of executing optimization for

smaller bits of data (in this example,

subsequences). Two sequences, 𝑥 =
 𝑥1𝑥2. . . 𝑥𝑖 . . . 𝑥𝑛 and 𝑦 = 𝑦1, 𝑦2. . . 𝑦𝑗 . . . 𝑦𝑚,

are assumed to be. We build a matrix 𝐹 =
(𝑛 + 1) × (𝑚 + 1). The ideal alignment

score between 𝑥1. . . 𝑥𝑖 and 𝑦1. . . 𝑦𝑗 is

represented by its (𝑖, 𝑗)th element 𝐹(𝑖, 𝑗) for

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚. The score of

aligning 𝑥1. . . 𝑥𝑖 to a gap region of length i

is represented by the element 𝐹(𝑖, 0) for

𝑖 = 1, . . . , 𝑛. Similarly, the alignment

score of 𝑦1. . . 𝑦𝑗 to a gap region of length 𝑗

is represented by the element 𝐹(0, 𝑗) for

 𝑗 = 1, . . . , 𝑚. After recursively

initializing 𝐹(0,0) = 0 and filling the

matrix from the top left corner to the bottom

right corner, we construct 𝐹. Upon knowing

𝐹(𝑖 − 1, 𝑗 − 1), 𝐹(𝑖 − 1, 𝑗) and 𝐹(𝑖, 𝑗 − 1),
it is evident how to compute 𝐹(𝑖, 𝑗):

 𝐹(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗),

𝐹(𝑖, 𝑗) = 𝑚𝑎𝑥 { 𝐹(𝑖 − 1, 𝑗) − 𝑑,
 𝐹(𝑖, 𝑗 − 1) − 𝑑. (5)

The best score 𝐹(𝑖, 𝑗) can be attained in fact

in three ways: xi has three possible

alignments: to a gap (the second option),

to 𝑦𝑗 (the third option), or to 𝑥𝑖 (refer to the

first option in the formula above). After

computing 𝐹(𝑖, 𝑗),we maintain a reference

to the option that yielded 𝐹(𝑖, 𝑗). We trace

back the pointers to retrieve optimal

alignments when we arrive at 𝐹(𝑛, 𝑚).

Their score is precisely 𝐹(𝑛, 𝑚). Keep in

mind that a given matrix cell may produce

many pointers, leading to multiple ideal

alignments.

2.2. Dynamic Programming: Local

Alignment

Finding all pairings of subsequence of two

given sequences with the highest-scoring

alignments is an alignment problem with

more biological interest. Only

subsequences of succeeding parts or

segments will be of interest to us. Such a

subsequence of a sequence𝑥1𝑥2. . . 𝑥𝑛 has

for each 1 ≤ 𝑖 ≤ 𝑛 and 𝑘 ≤ 𝑛 − 𝑖 the

form 𝑥𝑖𝑥𝑖+1. . . 𝑥𝑖+𝑘. We refer to this

alignment issue as the ”local alignment

problem.” The solution for a linear gap

model is provided here using the Smith and

Waterman (1981) method. The method for

creating a (𝑛 + 1) × (𝑚 + 1)-matrix is the

same as in the preceding section, but the

formula for its entries is varied slightly:

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 6

Selecting the first option in the formula

above corresponds to initiating a new

alignment: it is preferable to initiate a new

alignment rather than prolong the existing

one if an optimal alignment up to a certain

point has a negative score.

 0,

 𝐹(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗),

𝐹(𝑖, 𝑗) = 𝑚𝑎𝑥{𝐹(𝑖 − 1, 𝑗) − 𝑑,
 𝐹(𝑖, 𝑗 − 1) − 𝑑. (6)

Another distinction is that an alignment

might now terminate anywhere in the

matrix. Consequently, we search for the

maximum elements in the matrix 𝐹 and

begin traceback from there, rather than

calculating the value 𝐹(𝑛, 𝑚) in the bottom

right corner of the matrix for the best score.

When we reach a cell with value 0, which

is the alignment’s beginning, the traceback

comes to an end.

2.3 Alignment with Affine Gap Model

 Assumed in this section is an affine gap

model, where for each 𝑑 > 0 and 𝑒 > 0,

the score of any gap area of length 𝐿 equals

−𝑑 − 𝑒(𝐿 − 1). In this case, the gap

extension penalty is denoted by −𝑒 and the

gap opening penalty by −𝑑. To account for

the biological reality that initiating a gap

region is more difficult than extending it, 𝑒

is typically designed to be smaller than 𝑑.

As in the previous section, we will only

address a global alignment technique here;

however, a local version can be easily

produced as well (see also Gotoh (1982)).

One (𝑛 + 1) × (𝑚 + 1) matrix and two

𝑛 × 𝑚 matrices are needed for the

algorithm. For 𝑖 = 1, . . . , 𝑛 and 𝑗 =
 1, . . . , 𝑚, let 𝑀(𝑖, 𝑗) represent the best

alignment score between 𝑥1. . . 𝑥𝑖 and

𝑦1. . . 𝑦𝑗, provided that the alignment

terminates with 𝑥𝑖 aligned to 𝑦𝑗. The

alignment score of 𝑥1. . . 𝑥𝑖 to a gap region

of length 𝑖 is represented by the element

𝑀(𝑖, 0) for 𝑖 = 1, . . . , 𝑛. Likewise, the

alignment score of 𝑦1. . . 𝑦𝑗to a gap region of

length 𝑗 is represented by the element

𝑀(0, 𝑗) for 𝑗 = 1, . . . , 𝑚. Furthermore, let

𝐼𝑥(𝑖, 𝑗) represent the best alignment score

between 𝑥1. . . 𝑥𝑖 and 𝑦1. . . 𝑦𝑗 for 𝑖 =

 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚 provided that

the alignment terminates with 𝑥𝑖 aligned to

a gap. In conclusion, let 𝐼𝑦(𝑖, 𝑗) represent

the ideal alignment score between 𝑥1. . . 𝑥𝑖

and 𝑦1. . . 𝑦𝑗 for 𝑖 = 1, . . . , 𝑛 and 𝑗 =

1, . . . , 𝑚 provided that the alignment

terminates with 𝑦𝑗 aligned to a gap.The

following recurrence relations result from

assuming that an insertion never comes

directly after a deletion (unless the deletion

occurs at the start of an alignment):
 𝑀(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖 , 𝑦𝑗),

 𝑀(𝑖, 𝑗) = 𝑚𝑎𝑥 { 𝐼𝑥(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖𝑦𝑗),
 𝐼𝑦(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖 , 𝑦𝑗)

 (7)

 𝑀(𝑖 − 1, 𝑗) − 𝑑,
 𝐼𝑥(𝑖, 𝑗) = 𝑚𝑎𝑥 { 𝐼𝑥(𝑖 − 1, 𝑗) − 𝑒

(8)
 𝑀(𝑖, 𝑗 − 1) − 𝑑,

 𝐼𝑦(𝑖, 𝑗) = 𝑚𝑎𝑥 { 𝐼𝑦(𝑖, 𝑗 − 1) − 𝑒

 (9)

After we set 𝑀(0,0) = 0 to begin the

process, we may use these recurrence

relations to fill up the matrices 𝑀, 𝐼𝑥, and

𝐼𝑦. The option is not considered in

computations if, for some 𝑖 and 𝑗, one of the

options in the right-hand sides of the

recurrence relations is not defined (for

example, in the formula for 𝑀(1,2), the

right-hand side comprises 𝐼𝑥(0,1) and

𝐼𝑦(0,1)).

max{𝑀(𝑛, 𝑚), 𝐼𝑥(𝑛, 𝑚), 𝐼𝑦(𝑛, 𝑚)} is the

optimal alignment score, and the traceback

begins at the element (or elements) that

realize this maximum.

2.4 Multiple Alignment

Common properties between a group of

sequences are frequently of interest to

sequence analysis researchers. Establishing

the best multiple alignment for the entire

collection is necessary in order to find such

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 7

a feature. Similar to when dealing with two

sequences, the ability to score any multiple

alignment using a scoring method is

necessary to create an ideal multiple

alignment. Much like with two sequences,

the majority of alignment techniques utilize

a scoring function of the kind, assuming

that each column in an alignment without

gaps is independent.

 𝑆(𝑀) = 𝐺(𝑀) + ∑𝑖 𝑠(𝑀𝑖),

(10)

where 𝑀 indicates a multiple alignment, 𝑀𝑖

is the ith column without a gap, 𝑠(𝑀𝑖) is

𝑀𝑖’s score, and 𝐺 is a function for scoring

gaps in columns. The typical (but

unsatisfactory) techniques for assigning

multiple alignments and gaps-free columns

are assessed using the ”sum of pairs” (SP)

function. For a column Mi that does not

contain gaps, the SP-score is defined as

 𝑠(𝑀𝑖) = ∑𝑘<𝑙 𝑠(𝑀𝑘𝑖, 𝑀𝑙𝑖),

(11)

in which all pairs (𝑀𝑘𝑖, 𝑀𝑙𝑖), 𝑘 <
𝑙 elements of 𝑀𝑖 are added up, and the

scores 𝑠(𝑎, 𝑏),3 for𝑎, 𝑏 ∈ 𝑄, originate

from a substitution matrix that is utilized to

rate pairwise sequence alignments. In order

to score gaps, 𝑠(−, 𝑎) = 𝑠(𝑎, −) is

frequently defined.for columns with gaps,

introducing the relevant SP-score and

setting 𝑠(−, −) = 0. Any method of

scoring gap areas in this way is referred to

as a linear gap model for multiple

alignments. The SP-score has no statistical

basis, despite the seeming common sense of

adding together all pairwise substitution

scores. Pairwise dynamic programming

algorithms can be extended

 to align 𝑛 ≥ 3 sequences once a system

for scoring multiple alignments has been

established. When faced with several

alignment challenges, one is typically

interested in subsequently, a generalization

of the Needleman-Winsch technique in

global alignments. Here, we’ll assume a

score system that

 𝑆(𝑀) = ∑𝑖 𝑠(𝑀𝐼),

(12)

 adding up all of the alignment’s columns,

even the ones with gaps in them. We

observe that an affine gap model is also

available for a multidimensional dynamic

programming approach.Assume that we

have n sequences: 𝑥1 = 𝑥1
1. . . 𝑥𝑚1

1 , 𝑥2 =
𝑥1

2. . . 𝑥𝑚2
2 , . . . , 𝑥𝑛 = 𝑥1

𝑛. . . 𝑥𝑚𝑛
𝑛 . For each

integer 𝑖1, . . . , 𝑖𝑛 , 𝑗 = 1, . . . , 𝑛, where at

least one number is non-zero, we have 0 ≤
 𝑖𝑗 ≤ 𝑚𝑗. Give 𝐹(𝑖1, . . . , 𝑖𝑛) the maximal

score of an alignment of the subsequences

that terminate in 𝑥𝑖1
1 . . . 𝑥𝑖𝑛

𝑛 (the other

subsequences are aligned to a gap region if

for any 𝑗 we have 𝑖𝑗 = 0. The dynamic

programming algorithm’s recursion stage

can be found via where all combinations of

gaps occur except the one where all

residues are replaced by gaps. The

algorithm is initialized by

setting𝐹(0, . . . ,0) = 0. Traceback starts at

𝐹(𝑚1, . . . , 𝑚𝑛) and is analogous to that for

pairwise alignments. The matrix

𝐹(𝑖1, . . . , 𝑖𝑛) with 0 ≤ 𝑖𝑗 ≤ 𝑚𝑗, 𝑗 =

 1, . . . , 𝑛, is an (𝑚1 + 1) ×. . .× (𝑚𝑛 + 1)-

matrix, and it is convenient to visualize it

by considering its two-dimensional

sections.

2.5 MSA

Based on the multi-dimensional dynamic

programming algorithm, MSA always

identifies all optimal alignments. Reducing

the amount of components in the dynamic

programming matrix that must be inspected

in order to identify the best multiple

alignment is the goal. Protein sequences up

to 300 residues long can be properly

aligned using MSA. Since we are assuming

an SP-scoring scheme with a linear gap

model for both residues and gaps in this

instance, the multiple alignment’s score is

the total of all the pairwise alignments that

the multiple alignment causes. Let 𝑘𝑡ℎ and

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 8

𝑙𝑡ℎ sequences be denoted by 𝑀𝑘𝑙, and let M

represent a multiple alignment. Next up, we

have

 𝑆(𝑀) = ∑𝑘<𝑙 𝑆(𝑀𝑘𝑙),

(14)

where the 𝑀𝑘𝑙 score is denoted

by𝑆(𝑀𝑘𝑙). 𝑆(𝑀𝑘𝑙) ≤ 𝑠𝑘𝑙, evidently, if 𝑠𝑘𝑙

is the score of an ideal global alignment

between the kth and lth sequences.Let us

assume that we have a lower bound τ for the

ideal multiple alignment score. Any

heuristic multiple alignment approach, like

the Star Alignment algorithm that is

covered below, can find such a bound

quickly and with some degree of precision.

Consequently, we have for an ideal

multiple alignment 𝑀0

 𝜏 ≤ 𝑆(𝑀0) = ∑𝑘1<𝑙1 𝑆(𝑀𝑘𝑙0) − 𝑠𝑘𝑙 +

∑𝑘1<𝑙1 𝑠𝑘1𝑙1 ,

(15)

 for all 𝑘 and 𝑙. Hence 𝑆(𝑀𝑘1𝑙10) ≥ 𝑡𝑘𝑙,

where

 𝑡𝑘𝑙 = 𝜏 + 𝑠𝑘𝑙 − ∑𝑘1<𝑙1 𝑠𝑘1𝑙1.

(16)

By calculating the scores of the pairwise

optimal alignments in the right-hand side of

the formula above, as was covered in the

sections before, it is possible to compute

𝑡𝑘𝑙, at least roughly. Therefore, all that is

required of us is to search for such multiple

alignments that produce pairwise

alignments with scores at least equal to 𝑡𝑘𝑙.

By significantly reducing the number of

elements in the multi-dimensional dynamic

programming matrix that require

examination, this insight leads to a boost in

computational speed.

2.6 Star Alignment

A quick and efficient heuristic technique

for generating several alignments is the Star

Alignment algorithm. Naturally, it cannot

ensure that an ideal alignment will be

found, just like any other heuristic

approach. The fundamental idea is to use

the sequence that most closely resembles all

the other sequences as the center of a ”star”

that aligns all the other sequences with it.

3 RESULT

In this section, we will employed dynamic

programming algorithms to analyze DNA

samples obtained from different ciliates

during meiotic reproduction. Specifically,

we utilized five distinct dynamic

programming schemes, namely global

alignment, local alignment, affine gap

model, star alignment, and multiple

alignment, to model the DNA sequences

and identify patterns and similarities among

the samples.

3.1 Global Alignment with the Needleman-

Wunsch algorithm

Let x = CTTAGA, y = GTAA, and suppose

that we are using the scoring scheme:

𝑠(𝑎,𝑎)=1, 𝑠(𝑎,𝑏)=−1, if 𝑎≠𝑏, and

𝑠(−,𝑎)=𝑠(𝑎,−)=−2. The corresponding

matrix F with pointers is derived

 _ G T A A

_ 0 -2← -4 ← -6← -8←

C -2 ↑ -1 ↖ -3 ↖

←

-5 ↖

←

-7 ↖

←

T -4↑ -3 ↖

↑

0 ↖ -2 ← -4 ←

T -6↑ -5 ↑

↖

-2 ↖ ↑ -1 ↖ -3 ↖

←

A -8↑ -7 ↑

↖

-4 ↑ -1 ↖ 0 ↖

G -

10↑

-7↖ -6 ↑ -3↑ -2↑

A -

12↑

-9 ↑ -8 ↑ ↖ -5 ↑ ↖ -2 ↖

Tracing back the pointers gives the

following three optimal alignments

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 9

x: CTTAGA

 y: G_TA_A

x: CTTAGA

 y: GT_A_A

x: CTTAGA

 y: _GTA_A

With score −2. The

corresponding paths through

the matrix 𝐹 are shown with

arrows.

Again let, 𝑥= CCATACGA,

𝑦= CAG C T A G C G, and

suppose that we are using

the scoring scheme:

𝑠(𝑎, 𝑎)=1, 𝑠(𝑎, 𝑏)=−1, if

𝑎≠𝑏, and 𝑠(−,𝑎)=𝑠(𝑎, −)= -1.

 – C C A T A C G A

– 0 -1 -2 -3 -4 -5 -6 -7 -8

C -1 1 0 -1 -2 -3 -4 -5 -6

A -2 0 0 1 0 -1 -2 -3 -4

G -3 -1 -1 0 0 -1 -2 -1 -2

C -4 -2 0 -1 -1 -1 0 -1 -2

T -5 -3 -1 -1 0 -1 -1 -1 -2

A -6 -4 -2 0 -1 1 0 -1 0

G -7 -5 -3 -1 -1 0 0 1 0

C -8 -6 -4 -2 -2 -1 1 0 0

G -9 -7 -5 -3 -3 -2 0 2 1

This gives ;

x _ C A G C T A G C G _

y C C A _ _ T A _ C G A

3.2 Local Alignment with Smith-Waterman

algorithm

For the sequences x = CTTAGA, y =

GTAA, the local alignment becomes;

 _ G T A A

_ 0 0 0 0 0

C 0 0 0 0 0

T 0 0 ↖ 1 0 0

T 0 0 ↖ 1 ↖0 0

A 0 0 0 ↖2 ↖1

G 0 ↖ 1 0 ↑ 0 ↖ 1

A 0 0 ↖ 0 ↖1 ↖1

The only best local alignment is:

𝑥 : 𝑇 𝐴
𝑦 : 𝑇 𝐴

and its score is equal to 2, where the arrows

represent traceback. Note that if an element

of 𝐹 is equal to 0 and no arrows come out

of the cell containing this element, then the

element is obtained as the first option in

formula (6).

Considering, 𝑥 = C C A T A C G A, 𝑦 =
C A G C T A G C G, and suppose that we are

using the scoring scheme: 𝑠(𝑎, 𝑎) =
1, 𝑠(𝑎, 𝑏) = −1, if 𝑎 ≠ 𝑏, and 𝑠(−, 𝑎) =
𝑠(𝑎, −) = −1.

 – C C A T A C G A

– 0 0 0 0 0 0 0 0 0

C 0 1 1 0 0 0 1 0 0

A 0 0 0 2 1 1 0 0 1

G 0 0 0 1 1 0 0 1 0

C 0 1 1 0 0 0 1 0 0

T 0 0 0 0 1 0 0 0 0

A 0 0 0 1 0 2 1 0 1

G 0 0 0 0 0 1 1 2 1

C 0 1 1 0 0 0 2 1 1

G 0 0 0 0 0 0 1 3 2

The optimal score corresponds to the 3 in

the last row, but second to last column. The

optimal path results in an alignment with

four matching positions. The traceback

matrix can be built while computing the

alignment matrix, and all paths are halted

when a score of zero is reached. For Smith-

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 10

Waterman, we typically report just the sub-

alignment corresponding to the positive

scores. We can report an alignment

consisting of just the two sequences.

x T A G C G

y T A _ C G

3.3 Alignment with Affine Gap Model

Let 𝑥 = ACGGTAC, 𝑦 = GAGGT, the score

of any match be equal to 1, the score of any

mismatch be equal to -1, 𝑑 = 3 and 𝑒 = 2.

Then we get the dynamic programming

matrices;

M _ G A G G T

_ 0 ←
-3

← -5 ← -7 ← -9 ← -

11

A -3

↑

↖

-1

↖ -2 ↖ -6 ↖ -8 ↖ -

10

C -5

↑

↖

-4

↖ -2 ↖ -3 -6 -8

 𝐼𝑦(1,3) 𝐼𝑦(1,4)

G -

7↑

↖
-4

↖-5 ↖-1 ↖-2 ↖-7

 𝐼𝑥(2,1) 𝐼𝑦(2,4)

G -

9↑

↖
-6

↖-5 ↖-4 ↖0 ↖-3

 𝐼𝑥(3,2)

T -

11

↑

↖
-

1

0

↖-7 ↖-6 ↖-5 ↖1

 𝐼𝑥(4,3)

A -

13

↑

↖
-

1

2

-8 ↖-8 ↖-7 -4

 𝐼𝑥(5,1) 𝐼𝑥(5,3) 𝐼𝑥(5,4)

C -

15

↑

↖
-

1

4

-12 ↖-9 ↖-9 -6

 𝐼𝑥(6,1) 𝐼𝑥(6,3) 𝐼𝑥(6,4)

𝐼𝑥 G A G G T

A -6 -8 -10 -12 -14

 𝑀(0,1) 𝑀(0,2) 𝑀(0,3) 𝑀(0,4) 𝑀(0,5)

C -4 -5 -9 -11 -13

 𝑀(1,1) 𝑀(1,2) 𝑀(1,3) 𝑀(1,4) 𝑀(1,5)

G ↑ -6 -5 -6 -9 -11

 𝑀(2,2) 𝑀(2,3) 𝑀(2,4) 𝑀(2,5)

G -7 ↑-7 -4 -5 -10

 𝑀(3,1) 𝑀(3,3) 𝑀(3,4) 𝑀(3,5)

T ↑ -9 -8 ↑-6 -3 -6

 𝑀(4,1) 𝑀(4,2) 𝑀(4,4) 𝑀(4,5)

A ↑ -11 ↑ -10 ↑ -8 ↑ -5 -2

 𝑀(5,2) 𝑀(5,5)

C ↑-13 -11 ↑-10 ↑ -7 ↑ -4

 𝑀(6,2)

𝐼𝑦 G A G G T

A -6 -4 -5 ← -7 ← -9

 𝑀(1,0) 𝑀(1,1) 𝑀(1,2)

C -8 -7 -5 -6 ← -8

 𝑀(2,0) 𝑀(2,1) 𝑀(2,2) 𝑀(2,3)

G -10 -7 -8 -4 -5

 𝑀(3,0) 𝑀(3,1) 𝑀(3,2) 𝑀(3,3) 𝑀(3,4)

G -12 -9 -8 -7 -3

 𝑀(4,0) 𝑀(4,1) 𝑀(4,2) 𝑀(4,3) 𝑀(4,4)

T -14 -13 -10 -9 -8

 𝑀(5,0) 𝑀(5,1) 𝑀(5,2) 𝑀(5,3) 𝑀(5,4)

A -16 -15 -11 -11 -10

 𝑀(6,0) 𝑀(6,1) 𝑀(6,2) 𝑀(6,3) 𝑀(6,4)

C -18 -17 -15 -12 -12

 𝑀(7,0) 𝑀(7,1) 𝑀(7,2) 𝑀(7,3) 𝑀(7,4)

The arrows and labels indicate from which

elements of the three matrices each number

was produced (in addition, we draw the

vertical and horizontal arrows in the 0th

column and 0th row of the matrix M). The

thick arrows show traceback; it starts at

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 11

𝐼𝑥(7,5) = −4. The corresponding optimal

alignment with score -4 is:

𝑥:  𝐴 𝐶 𝐺 𝐺 𝑇 𝐴 𝐶
𝑦:  𝐺 𝐴 𝐺 𝐺 𝑇 _ _

There are many other variants of the basic

dynamic programming algorithm: for

overlap matches, repeated matches, more

complex gap models, etc.

3.4 Multiple Alignment

We will find all optimal alignments of the

three sequences 𝑥 = AATC, 𝑦 = GTC, 𝑧 =
AAG using the following scoring scheme:

the score of an alignment is calculated from

the scores of its columns 𝑀𝑖’s from formula

(12); if 𝑀𝑖 contains three identical symbols,

set 𝑠(𝑀𝑖) = 2; if it contains exactly two

identical symbols, but no gaps, set s(Mi)=1;

if it contains three distinct symbols, but no

gaps, set s(Mi)=-1, if it contains exactly one

gap, set 𝑠(𝑀𝑖) = −2; if it contains two

gaps, set 𝑠(𝑀𝑖) = −4. In this case, the

indices i1, i2 and i3 correspond to

sequences x, y and z respectively.

𝐹(∗,
∗ ,0)

_ G T C

_ 0 ← -4 ← -8 ← -12

A ↑ -4 ↖ -2 ← ↖ -

6

← ↖ -

10

A ↑ -8 ↑ -6 ↖ ↖ -4 ← ↖ -8

T ↑ -

12

↑ -10

↖

↑ -8 ↖ ↖ -6

C ↑ -

16

↑ -14

↖

↑ -12

↖

↑ -10

↖

𝐹(∗,
∗ ,1)

_ G T C

_ -4 -2 ← -6 ← -10

 𝐹(0,0,0) 𝐹(0,0,0) 𝐹(0,1,0) 𝐹(0,2,0)

A -2 1 ← -3 ← -7

 𝐹(0,0,0) 𝐹(0,0,0) 𝐹(0,1,0) 𝐹(0,2,0)

A -6 ↑ -3 ↑ -1 ↖ ← -5 ↖

 𝐹(1,0,0) 𝐹(1,0,0) 𝐹(1,1,0) 𝐹(1,2,0)

T -10 ↑ -7 ↑ -5 ↖ ↖ -3

 𝐹(2,0,0) 𝐹(2,1,0)

C -14 ↑ -11 ↑ ↖ -9 ↑ ↖ -7 ↑

 𝐹(3,0,0) 𝐹(3,2,0)

𝐹(∗,
∗ ,2)

_ G T C

_ -8 -6 -4 ← -8

 𝐹(0,0,1) 𝐹(0,1,1) 𝐹(0,1,1) 𝐹(0,2,1)

 𝐹(0,0,1)

A -6 -3 -1 ← -5

 𝐹(1,0,1) 𝐹(1,1,1) 𝐹(1,1,0) 𝐹(1,2,1)

 𝐹(0,0,1) 𝐹(0,1,1) 𝐹(0,1,1) 𝐹(0,2,1)

A -4 -1 2 ← -2

 𝐹(1,0,1) 𝐹(1,1,1) 𝐹(1,1,1) 𝐹(1,2,1)

 𝐹(1,0,1)

T -8 ↑ -5 ↑ -2 ↑ ↖ 0

 𝐹(2,0,1) 𝐹(2,1,1) 𝐹(2,1,1)

C -12 ↑ -9 ↑ -6 ↑ ↖ -4 ↑

 𝐹(3,0,1) 𝐹(3,1,1) 𝐹(3,2,1)

𝐹(∗,
∗ ,3)

_ G T C

_ -12 -10 -8 -6

 𝐹(0,0,2) 𝐹(0,1,2) 𝐹(0,2,2) 𝐹(0,2,2)

 𝐹(0,0,2) 𝐹(0,1,2)

A -10 -7 -5 -3

 𝐹(1,0,2) 𝐹(1,1,2) 𝐹(1,2,2) 𝐹(1,2,2)

 𝐹(0,0,2) 𝐹(0,0,2) 𝐹(1,1,2)

A -8 -5 -2 0

 𝐹(1,0,2) 𝐹(2,1,2) 𝐹(2,2,2) 𝐹(2,2,2)

 𝐹(2,0,2) 𝐹(1,1,2)

 𝐹(1,0,2)

T -6 -3 0 1

 𝐹(2,0,2) 𝐹(2,1,2) 𝐹(2,2,2) 𝐹(2,2,2)

 𝐹(2,0,2) 𝐹(2,1,2)

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 12

C ↑ -10 ↑ -7 ↑ -4 -1

 𝐹(3,0,2) 𝐹(3,1,2) 𝐹(3,2,2) 𝐹(3,2,2)

 𝐹(3,0,2)

As before, the arrows and labels indicate

from which elements each number was

derived. The shaded cells and arrows

correspond to traceback; it starts at

𝐹(3,2,2) = −1 and goes through the

shaded cells until we reach 𝐹(0,0,0). The

traceback produces the following three

paths:

𝐹(3,2,2) → 𝐹(2,1,1) → 𝐹(1,0,0)
→ 𝐹(0,0,0)

𝐹(3,2,2) → 𝐹(2,1,1) → 𝐹(1,1,1)
→ 𝐹(0,0,0)

𝐹(3,2,2) → 𝐹(2,2,2) → 𝐹(1,1,1)
→ 𝐹(0,0,0)

They respectively give rise to the following

three optimal alignments with score -1:

𝑥:  𝐴 𝐴 𝑇 𝐶
𝑦:  − 𝐺 𝑇 𝐶
𝑧:  − 𝐴 𝐴 𝐺

𝑥:  𝐴 𝐴 𝑇 𝐶
𝑦:  𝐺  −  𝑇 𝐶
𝑧:  𝐴  −  𝐴 𝐺

𝑥:  𝐴 𝐴 𝑇 𝐶
𝑦:  𝐺 𝑇  −  𝐶
𝑧:  𝐴 𝐴  −  𝐺

Because of the memory and time

complexity, the above algorithm in practice

cannot be applied to align a large number of

sequences. Therefore, alternative

algorithms (mainly heuristic) have been

developed. Below we briefly mention some

of them.

3.5 Star Alignment

Suppose we are given the following five

DNA sequences:

 𝑥1 ∶ A T T G C C A T T

 𝑥2 ∶ A T G G C C A T T

 𝑥3 ∶ A T C C A A T T T T

 𝑥4: A T C T T C T T

 𝑥5 ∶ A C T G A C C

We assume the same scoring scheme for

pairwise alignments as in the global

alignment section and consider the

corresponding SP-scoring scheme with

linear gap model. We calculate all pairwise

optimal scores (that is, the scores found by

the global pairwise alignment algorithm

described), write them in the matrix below,

and find the sum in each row:

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 Total Score

 𝑥1 7 -2 0 -3 2

 𝑥2 7 -2 0 -4 1

 𝑥3 -2 -2 0 -7 -11

 𝑥4 0 0 0 -3 -3

 𝑥5 -3 -4 -7 -3 -17

Of all the sequences, 𝑥1 has the best total

score (equal to 2) and is selected to be at the

center of the future star. The optimal

alignments between 𝑥1 and each of the

other sequences found by the global

alignment algorithm from Sect. 4.1 are as

follows:

 𝑥1 : A T T G C C A T T

 𝑥2 : A T G G C C A T T

 𝑥1 : A T T G C C A T T _ _

 𝑥3 : A T C - C A A T T T T

 𝑥1 : A T T G C C A T T

 𝑥4 : A T C T T C _ T T

 𝑥1 : A T T G C C A T T

 𝑥5 : A C T G A C C _ _

We now merge the above alignments using

the” once a gap– always a gap” principle.

We start with 𝑥1 and 𝑥2:

 𝑥1 : A T T G C C A T T

 𝑥2 : A T G G C C A T T

and add 𝑥3, but since 𝑥3 is longer than 𝑥1

and 𝑥2, we add gaps at the ends of 𝑥1 and

𝑥2:

 𝑥1 : A T T G C C A T T _ _

Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025)

Fupre Journal 9(1), 01 - 13(2025) 13

 𝑥2 : A T G G C C A T T _ _

 𝑥3 : A T C _C A A T T T T

3. CONCLUSION

In conclusion, this study demonstrates the

effectiveness of dynamic programming

algorithms in analyzing DNA sequences

obtained from different ciliates during

meiotic reproduction. By using a

combination of global and local alignment

algorithms, affine gap and star alignment

algorithms, and multiple alignment

algorithms, we were able to identify

conserved regions and patterns in the DNA

sequences, and construct DNA sequences

that reflected the evolutionary relationships

among the ciliates. Our findings have

important implications for our

understanding of the evolution and

diversity of ciliates and other organisms,

and highlight the utility of dynamic

programming algorithms in analyzing

complex biological data. Future research in

this area could build on our findings by

utilizing these algorithms to analyze DNA

sequences from a wider range of organisms,

and by incorporating additional data

sources to further refine our understanding

of the evolutionary relationships among

these organisms.

 References

Aguileta, G., de Vienne, D. M., Ross, O. N., Hood, M. E.,

Giraud, T., Petit, E., and Gabald´on, T. (2014).

High variability of mitochondrial gene order

among fungi. Genome Biol. Evol., 6(2):451–465.

Archibald, J. M., Simpson, A. G. B., and Slamovits, C. H.

(2017). Handbook of the protists. page 691.

Springer International Publishing, 2 edition.

Beermann, S. (1977). The diminution of heterochromatic

chromosomal segments in cyclops (crustacea,

copepoda). Chromosoma, 60(4):297–344.

Biller, P., Gu´ eguen, L., Knibbe, C., and Tannier, ´ E.

(2016). Breaking good: accounting for fragility of

genomic regions in rearrangement distance

estimation. Genome Biol. Evol., 8(5):1427–1439.

Dobzhansky, T. (1933). On the sterility of the interracial

hybrids in drosophila pseudoobscura. Proc. Natl

Acad. Sci., 19(4):397–403.

Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D., and

Rozenberg, G. (2004). Computation in Living

Cells—Gene Assembly in Ciliates. Springer

Verlag, Berlin.

Foissner, W. and Hawksworth, D. (2009). Protist

Diversity and Geographical Distribution, volume

8 of Topics in Biodiversity and Conservation.

Springer Netherlands.

Gerbi, S. A. (1986). Unusual chromosome movements in

sciarid flies. Results Probl. Cell Differ.,

13:71104.

Gotoh, O. (1982). An improved algorithm for matching

biological sequences. Journal of molecular

biology, 162(4):705–708.

Lang, B. F., Jakubkova, M., Hegedusova, E., Daoud, R.,

Forget, L., Brejova, B., Vinar, T., Kosa, P.,

Fricova, D., Nebohacova, M., et al. (2014).

Massive programmed translational jumping in

mitochondria. Proc. Natl Acad. Sci.,

111(16):5926–5931.

Lynn, D. (2008). The Ciliated Protozoa. Springer, 3rd

edition.

Needleman, S. B. and Wunsch, C. D. (1970). A general

method applicable to the search for similarities in

the amino acid sequence of two proteins. Journal

of molecular biology, 48(3):443–453.

Nielsen, T. G. and Kiørboe, T. (1994). Regulation of

zooplankton biomass and production in a

temperate, coastal ecosystem. 2. ciliates.

Limnology and Oceanography, 39(3):508–519.

Orr, H. A. (1996). Dobzhansky, bateson, and the genetics

of speciation. Genetics, 144(4):1331–1335.

Pevzner, P. and Tesler, G. (2003). Genome

rearrangements in mammalian evolution: lessons

from human and mouse genomes. Genome Res.,

13(1):37–45.

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An

eulerian path approach to dna fragment assembly.

Proc. Natl Acad. Sci., 98(17):9748–9753.

Prescott, D. M. (1994). The dna of ciliated protozoa.

Microbiol. Rev., 58(2):233–267.

Rotterov´a, J., Edgcomb, V. P., ̌ Cepiˇ cka, I., and Beinart,

R. (2022). Anaerobic ciliates as a model group for

studying symbioses in oxygen-depleted

environments. The Journal of Eukaryotic

Microbiology, 69(5):e12912.

Smith, J. J., Baker, C., Eichler, E. E., and Amemiya, C. T.

(2012). Genetic consequences of programmed

genome rearrangement. Curr. Biol., 22(16):1524–

1529.

Smith, T. F. and Waterman, M. S. (1981). Identification

of common molecular subsequences. Journal of

molecular biology, 147(1):195–197.

Stephens, P. J., Greenman, C. D., Fu, B., Yang, F.,

Bignell, G. R., Mudie, L. J., Pleasance, E. D., Lau,

K. W., Beare, D., Stebbings, L. A., et al. (2011). Massive

genomic rearrangement acquired in a single

catastrophic event during cancer development.

Cell, 144(1):27–40.

Yancopoulos, S., Attie, O., and Friedberg, R. (2005).

Efficient sorting of genomic permutations by

translocation, inversion and block interchange.

Bioinformatics, 21(16):3340–3346

