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ABSTRACT 

Dynamic programming algorithms are powerful tools for analyzing complex 

biological data, including DNA sequences. In this study, we employed a 

combination of global and local alignment algorithms, affine gap and star 

alignment algorithms, and multiple alignment algorithms to analyze DNA 

sequences obtained from different ciliates during meiotic reproduction. Our 

analysis revealed that these algorithms were effective in identifying conserved 

regions and patterns in the DNA sequences, and in constructing phylogenetic trees 

that reflected the evolutionary relationships among the sequences. Specifically, we 

found that the global alignment algorithm was useful for identifying long stretches 

of identical nucleotides, while the local alignment algorithm was effective in 

detecting shorter, conserved regions. The affine gap model allowed us to account 

for the presence of gaps in the sequences, while the star alignment algorithm 

enabled us to identify conserved regions that were shared among multiple, closely 

related sequences. Finally, the multiple alignment algorithm allowed us to 

compare the DNA sequences of multiple ciliates simultaneously, and to identify 

conserved regions that were shared among all of the species studied. Our findings 

have important implications for our understanding of the evolution and diversity 

of ciliates and other organisms, and highlight the utility of dynamic programming 

algorithms in analyzing complex biological data. Overall, our study provides a 

framework for using dynamic programming algorithms to analyze DNA 

sequences, and demonstrates the potential of these algorithms to provide insights 

into the genetic factors that underlie evolution and diversity in a wide range of 

organisms. 
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1. INTRODUCTION 

 

The ciliates are a group of alveolates 

characterised by the presence of hair-like 

organelles called cilia, which are identical 

in structure to eukaryotic flagella, but are in 

general shorter and present in much larger 

numbers, with a different undulating 

pattern than flagella. Cilia occur in all 

members of the group (although the 

peculiar Suctoria only have them for part of 

their life cycle) and are variously used in 

swimming, crawling, attachment, feeding, 

and sensation. Ciliates are an important 

group of protists, common almost 

anywhere there is water—in lakes, ponds, 

oceans, rivers, and soils, including anoxic 

and oxygen depleted habitats(Rotterov´a et 

al. (2022)). About 4,500 unique free-living 

species have been described, and the 

potential number of extant species is 

estimated at 27,000–40,000, Foissner and 

Hawksworth (2009). Included in this 

number are many ectosymbiotic and 
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endosymbiotic species, as well as some 

obligate and opportunistic parasites. Ciliate 

species range in size from as little as 10 µm 

in some colpodeans to as much as 4 mm in 

length in some geleide, and include some of 

the most morphologically complex 

protozoans, Lynn (2008); Nielsen and 

Kiørboe (1994). Unlike most other 

eukaryotes, ciliates have two different sorts 

of nuclei: a tiny, diploid micronucleus (the” 

generative nucleus”, which carries the 

germline of the cell), and a large, 

ampliploid macronucleus (the” vegetative 

nucleus”, which takes care of general cell 

regulation, expressing the phenotype of the 

organism), (Archibald et al. (2017)). The 

latter is generated from the micronucleus by 

amplification of the genome and heavy 

editing. The micronucleus passes its genetic 

material to offspring, but does not express 

its genes. The macronucleus provides the 

small nuclear RNA for vegetative growth, 

(Archibald et al. (2017); Prescott (1994)). 

Division of the macronucleus occurs in 

most ciliate species, apart from those in 

class Karyorelictea, whose macronuclei are 

replaced every time the cell divides, (Lynn 

(2008)). Macronuclear division is 

accomplished by amitosis, and the 

segregation of the chromosomes occurs by 

a process whose mechanism is unknown, 

(Archibald et al. (2017)). After a certain 

number of generations (200–350, in 

Paramecium aurelia, and as many as 1,500 

in Tetrahymena (Lynn (2008))) the cell 

shows signs of aging, and the macronuclei 

must be regenerated from the micronuclei. 

Usually, this occurs following conjugation, 

after which a new macronucleus is 

generated from the post-conjugal 

micronucleus, (Archibald et al. (2017)). 

Pevzner et al. (2001) introduces the concept 

of using Eulerian paths to address the 

challenge of DNA fragment assembly. The 

authors propose an algorithm that 

reconstructs the original DNA sequence 

from a collection of short DNA fragments. 

While not directly related to ciliate 

reproduction, this work highlights the 

importance of computational methods in 

understanding and analyzing DNA 

rearrangements. Dobzhansky (1933)’s 

study on the sterility of interracial hybrids 

in Drosophila pseudoobscura provides 

insights into the genetic basis of 

reproductive isolation and speciation. 

Although not specific to ciliates, this article 

emphasizes the role of genetic 

incompatibilities resulting from DNA 

rearrangements in reproductive barriers and 

evolutionary processes. Orr (1996) 

explores the contributions of Dobzhansky 

and Bateson to our understanding of genetic 

mechanisms underlying speciation. The 

author emphasizes the role of genetic 

changes, including DNA rearrangements, 

in driving reproductive isolation and the 

formation of new species. This work 

provides a broader context for 

understanding the evolutionary 

implications of DNA rearrangements in 

ciliate reproduction. Pevzner and Tesler 

(2003) investigates genome rearrangements 

in mammalian evolution, specifically 

focusing on the human and mouse 

genomes. By studying large-scale DNA 

rearrangements, the authors shed light on 

the evolutionary processes that shape the 

organization of genomes. This research 

provides insights into the broader 

implications of DNA rearrangements in the 

context of evolutionary biology. Biller et al. 

(2016) addresses the challenge of 

estimating rearrangement distances 

between genomes, considering the fragility 

of specific genomic regions. By accounting 

for fragile regions that are prone to DNA 

rearrangements, the authors propose an 

improved method for accurately measuring 

the distance between genomes. This work 

highlights the importance of considering 

the structural properties of genomes in the 

study of DNA rearrangements. 

 

Yancopoulos et al. (2005) presents an 

efficient algorithm for sorting genomic 

permutations, which involve 

rearrangements such as translocations, 
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inversions, and block interchanges. While 

not specific to ciliate reproduction, this 

work contributes to the computational 

methods used to analyze DNA 

rearrangements and can inform our 

research on modeling meiotic 

rearrangements in ciliates. Beermann 

(1977)’s study on the diminution of 

heterochromatic chromosomal segments in 

Cyclops provides insights into the DNA 

rearrangements that occur during the 

development of this crustacean. The 

research highlights the process of segment 

elimination, which involves the removal of 

specific chromosomal segments during the 

formation of somatic cells. Although not 

specific to ciliates, this work contributes to 

our understanding of DNA rearrangements 

in different organisms. Gerbi (1986) 

explores the unusual chromosomal 

movements in the spermatocytes of sciarid 

flies. These flies exhibit complex and 

dynamic chromosomal movements during 

meiosis, including the formation of 

chromosomal bouquets and the movement 

of chromosomes to specific regions of the 

nucleus. They suggest that these 

movements may play an essential role in 

ensuring proper chromosomal segregation 

during meiosis. The paper provides a 

detailed analysis of the chromosomal 

movements in sciarid flies and offers 

valuable insights into the mechanisms that 

govern chromosomal segregation in these 

organisms. Prescott (1994) focuses on the 

DNA of ciliated protozoa. These organisms 

have highly complex genomes that undergo 

programmed genome rearrangements 

during their life cycle. Prescott provides an 

overview of the unique features of the DNA 

of ciliated protozoa, including its structure 

and organization, and the mechanisms that 

govern genome rearrangement. The paper 

also highlights the potential of ciliated 

protozoa as model systems for studying 

genome dynamics. Understanding the 

genome rearrangements in ciliated protozoa 

can provide insights into the evolution of 

complex genomes and the mechanisms that 

drive genome evolution. Smith et al. (2012) 

discusses the genetic consequences of 

programmed genome rearrangement in 

various organisms. The authors describe 

how these rearrangements can result in the 

creation of new genes, the deletion of 

existing genes, and the formation of 

chimeric genes. They also discuss the 

potential impact of these rearrangements on 

genome evolution and the development of 

new species. The paper highlights the 

importance of understanding the 

mechanisms that govern genome 

rearrangements in order to better 

understand the evolution of complex 

genomes. Stephens et al. (2011) describes a 

catastrophic event that led to massive 

genomic rearrangement in a single cancer 

cell. The authors used whole-genome 

sequencing to identify more than 10,000 

rearrangements in a single cell, which is 

unprecedented in cancer genomics. The 

study provides important insights into the 

mechanisms of genome instability in 

cancer. Aguileta et al. (2014) investigated 

the variability of mitochondrial gene order 

among fungi. Mitochondrial genomes are 

known to be highly variable in terms of 

gene order and content, and this study 

provides a comprehensive analysis of this 

variability in fungi. The authors found that 

the gene order is highly variable even 

among closely related species, and that this 

variability is due to frequent 

rearrangements and gene loss. Lang et al. 

(2014) discovered massive programmed 

translational jumping in mitochondria. The 

authors found that mitochondrial ribosomes 

can skip large regions of the genome during 

translation, resulting in the production of 

truncated proteins. This finding challenges 

the traditional view of mitochondrial 

translation and provides new insights into 

the evolution of mitochondrial genomes. 

Ehrenfeucht et al. (2004) discussed the 

computation that occurs in living cells 

during gene assembly in ciliates. The 

authors provide a comprehensive overview 

of the molecular mechanisms involved in 
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gene assembly, and discuss how these 

mechanisms can be modeled using formal 

language theory. 

 

2. MATERIALS AND METHODS 

New DNA, RNA, and protein sequences 

emerge from existing sequences rather than 

being created from scratch by nature. This 

fundamental principle forms the basis of 

sequence analysis. If we can establish a 

connection between a newly discovered 

sequence and a sequence for which some 

information (such as structure or function) 

is already known, it is likely that this known 

information also applies, to some degree, to 

the new sequence. We consider any two 

related sequences to have originated from a 

shared ancestral sequence during the 

process of evolution and refer to them as 

homologous sequences. Seeking sequence 

similarity is the first step in deducing 

homology. Determining whether two 

sequences are similar or not can be 

challenging when they are lengthy. One 

must correctly align them in order to 

determine whether they are comparable. 

Sequences can experience substitutions, or 

the replacement of one residue by another, 

when they evolve from a common ancestor. 

In addition to substitutions, sequences can 

collect a number of events of two other 

types during evolution: insertions, which 

occur when new residues enter in a 

sequence in addition to the ones that 

already exist, and deletions, which occur 

when some residues disappear. Residues 

must therefore be permitted to align not just 

to other residues but also to gaps in order to 

achieve the best possible alignment 

between two sequences. An insertion or 

deletion event is indicated by the existence 

of a gap in an alignment. Take into 

consideration, for instance, the next two 

incredibly short nucleotide sequences, each 

with just seven residues:        

                        𝑥 ∶  𝑇𝐴𝐶𝐶𝐴𝐺𝑇  

                       𝑦 ∶  𝐶𝐶𝐶𝐺𝑇𝐴𝐴                       (1) 

 

If gaps in alignments are avoided, there is 

only one method to align the sequences 

because they are of the same length: 

 

                      𝑥 ∶  𝑇 𝐴 𝐶 𝐶 𝐴 𝐺 𝑇 

                      𝑦 ∶  𝐶 𝐶 𝐶 𝐺 𝑇 𝐴 𝐴                    

(2) 

There are numerous alignments that are 

feasible, though, if gaps are allowed. 

Specifically, the alignment that follows 

appears to be far more instructive than the 

one that comes before it: 

 

                           𝑥 ∶  𝑇𝐴𝐶𝐶𝐴𝐺𝑇_ _ 

                           𝑦 ∶  𝐶_𝐶𝐶_𝐺𝑇𝐴𝐴                

(3) 

The subsequence CCGT may be an 

evolutionarily conserved region, according 

to alignment (2.1), which suggests that both 

x and y may have developed from a shared 

ancestral sequence that contained the 

subsequence CCGT in the right places. 

Here’s another alignment that seems 

plausible:                  

                        𝑥 ∶  𝑇 𝐴 𝐶 𝐶 𝐴 𝐺 𝑇_ _ 

                        𝑦 ∶ _ _ 𝐶 𝐶 𝐶 𝐺 𝑇 𝐴 𝐴            

(4) 

In what way is alignment (3) superior to 

alignment (4)? Are certain alignments 

better than others? In order to respond to 

these inquiries, we must be able to assess 

every potential alignment. The best or most 

ideal alignments are therefore those with 

the highest score (although there may be 

multiple of these alignments).  

       The most common scoring 

techniques make the assumption that each 

column in an alignment is independent of 

the others and assign the alignment’s 

overall score to equal the sum of the scores 

of its individual columns. With a,b ∈ Q, 

where Q is either the 4-letter DNA or RNA 

alphabet or the 20-letter amino acid 

alphabet, depending on the type of 

sequences that we are interested in aligning, 

one only needs to specify the scores 

𝑠(𝑎, 𝑏)  =  𝑠(𝑏, 𝑎) and the gap penalty 

𝑠(−, 𝑎)  =  𝑠(𝑎, −), for such schemes. 

Naturally, the scoring system affects which 
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alignments between two sequences are 

optimal. The optimal alignments for two 

distinct scoring systems could be very 

different from one another. One can set 

𝑠(𝑎, 𝑎)  =  1(the match score), 𝑠(𝑎, 𝑏)  =
 −1 if a=b (the mismatch score), and 

s(−,a)=s(a,−)= −2 (the gap penalty) as an 

example of a scoring scheme. It is crucial to 

remember, nevertheless, that for a scoring 

system to result in a logical alignment, it 

must be biologically relevant. A strategy 

like this needs to account for the constraints 

on sequence evolution. For instance, by 

making the score of a continuous gap 

region an affine function of its length 

(notice that in the example above, the score 

of a gap region is linear in its length), many 

popular scoring schemes establish some 

degree of dependence among the columns 

in an alignment. A substitution or scoring 

matrix is formed by the numbers 𝑠(𝑎, 𝑏). 

For sequence comparison to be effective, 

substitution matrices must be symmetric 

and have a few other requirements. 

 2.1 Dynamic Programming: Global 

Alignment 

The linear gap model (𝑠(−, 𝑎) = 𝑠(𝑎, −) =
−𝑑  for 𝑎 ∈  𝑄, with 𝑑 > 0, is assumed in 

this section so that the score of a gap area 

of length 𝐿 equals −𝑑𝐿 and propose the 

Needleman and Wunsch (1970) algorithm, 

which is able to identify all optimal global 

alignments in an algorithmic fashion (there 

are often multiple such alignments).The 

goal is to take subsequences that have 

optimal alignments and turn them into an 

ideal alignment. Dynamic programming 

algorithms are commonly defined as 

algorithms that accomplish optimization by 

means of executing optimization for 

smaller bits of data (in this example, 

subsequences). Two sequences,  𝑥 =
 𝑥1𝑥2. . . 𝑥𝑖 . . . 𝑥𝑛  and 𝑦 = 𝑦1, 𝑦2. . . 𝑦𝑗 . . . 𝑦𝑚, 

are assumed to be. We build a matrix 𝐹 =
(𝑛 + 1) × (𝑚 + 1). The ideal alignment 

score between 𝑥1. . . 𝑥𝑖 and 𝑦1. . . 𝑦𝑗 is 

represented by its (𝑖, 𝑗)th element 𝐹(𝑖, 𝑗) for 

𝑖 =  1, . . . , 𝑛, 𝑗 =  1, . . . , 𝑚. The score of 

aligning 𝑥1. . . 𝑥𝑖 to a gap region of length i 

is represented by the element 𝐹(𝑖, 0) for 

𝑖 =  1, . . . , 𝑛. Similarly, the alignment 

score of 𝑦1. . . 𝑦𝑗 to a gap region of length 𝑗 

is represented by the element 𝐹(0, 𝑗) for 

 𝑗 =  1, . . . , 𝑚. After recursively 

initializing 𝐹(0,0)  =  0 and filling the 

matrix from the top left corner to the bottom 

right corner, we construct 𝐹. Upon knowing 

𝐹(𝑖 − 1, 𝑗 − 1), 𝐹(𝑖 − 1, 𝑗) and 𝐹(𝑖, 𝑗 − 1), 
it is evident how to compute 𝐹(𝑖, 𝑗): 

 

 
                              𝐹(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗),    

𝐹(𝑖, 𝑗) = 𝑚𝑎𝑥 { 𝐹(𝑖 − 1, 𝑗) − 𝑑, 
                              𝐹(𝑖, 𝑗 − 1) − 𝑑.                      (5) 
 

 

The best score 𝐹(𝑖, 𝑗) can be attained in fact 

in three ways: xi has three possible 

alignments: to a gap (the second option), 

to 𝑦𝑗 (the third option), or to 𝑥𝑖 (refer to the 

first option in the formula above). After 

computing 𝐹(𝑖, 𝑗),we maintain a reference 

to the option that yielded 𝐹(𝑖, 𝑗). We trace 

back the pointers to retrieve optimal 

alignments when we arrive at 𝐹(𝑛, 𝑚). 

Their score is precisely 𝐹(𝑛, 𝑚). Keep in 

mind that a given matrix cell may produce 

many pointers, leading to multiple ideal 

alignments. 

2.2. Dynamic Programming: Local 

Alignment 

Finding all pairings of subsequence of two 

given sequences with the highest-scoring 

alignments is an alignment problem with 

more biological interest. Only 

subsequences of succeeding parts or 

segments will be of interest to us. Such a 

subsequence of a sequence𝑥1𝑥2. . . 𝑥𝑛 has 

for each 1 ≤  𝑖 ≤  𝑛 and 𝑘 ≤ 𝑛 − 𝑖 the 

form 𝑥𝑖𝑥𝑖+1. . . 𝑥𝑖+𝑘. We refer to this 

alignment issue as the ”local alignment 

problem.” The solution for a linear gap 

model is provided here using the Smith and 

Waterman (1981) method. The method for 

creating a (𝑛 + 1) × (𝑚 + 1)-matrix is the 

same as in the preceding section, but the 

formula for its entries is varied slightly: 

 



Osanakpa and Ugbene(2025)/ FUPRE Journal, 9(1):01-13(2025) 

 

Fupre Journal 9(1), 01 - 13(2025)   6 

 
 

Selecting the first option in the formula 

above corresponds to initiating a new 

alignment: it is preferable to initiate a new 

alignment rather than prolong the existing 

one if an optimal alignment up to a certain 

point has a negative score. 

 

  
                                 0, 
                                      
                                          
                                     𝐹(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗), 

𝐹(𝑖, 𝑗)  =  𝑚𝑎𝑥{𝐹(𝑖 − 1, 𝑗) − 𝑑, 
                                      𝐹(𝑖, 𝑗 − 1) − 𝑑.                     (6) 
 

 

Another distinction is that an alignment 

might now terminate anywhere in the 

matrix. Consequently, we search for the 

maximum elements in the matrix 𝐹 and 

begin traceback from there, rather than 

calculating the value 𝐹(𝑛, 𝑚) in the bottom 

right corner of the matrix for the best score. 

When we reach a cell with value 0, which 

is the alignment’s beginning, the traceback 

comes to an end. 

2.3     Alignment with Affine Gap Model 

 Assumed in this section is an affine gap 

model, where for each  𝑑 >  0 and 𝑒 >  0, 

the score of any gap area of length 𝐿 equals 

−𝑑 − 𝑒(𝐿 − 1). In this case, the gap 

extension penalty is denoted by −𝑒 and the 

gap opening penalty by −𝑑. To account for 

the biological reality that initiating a gap 

region is more difficult than extending it, 𝑒 

is typically designed to be smaller than 𝑑. 

As in the previous section, we will only 

address a global alignment technique here; 

however, a local version can be easily 

produced as well (see also Gotoh (1982)). 

One (𝑛 + 1) × (𝑚 + 1) matrix and two 

𝑛 × 𝑚  matrices are needed for the 

algorithm. For 𝑖 =  1, . . . , 𝑛  and 𝑗 =
 1, . . . , 𝑚, let 𝑀(𝑖, 𝑗) represent the best 

alignment score between 𝑥1. . . 𝑥𝑖 and 

𝑦1. . . 𝑦𝑗, provided that the alignment 

terminates with 𝑥𝑖 aligned to 𝑦𝑗. The 

alignment score of 𝑥1. . . 𝑥𝑖 to a gap region 

of length 𝑖 is represented by the element 

𝑀(𝑖, 0) for 𝑖 =  1, . . . , 𝑛. Likewise, the 

alignment score of 𝑦1. . . 𝑦𝑗to a gap region of 

length 𝑗 is represented by the element 

𝑀(0, 𝑗) for 𝑗 =  1, . . . , 𝑚. Furthermore, let 

𝐼𝑥(𝑖, 𝑗) represent the best alignment score 

between 𝑥1. . . 𝑥𝑖 and 𝑦1. . . 𝑦𝑗 for 𝑖 =

 1, . . . , 𝑛 and 𝑗 =  1, . . . , 𝑚 provided that 

the alignment terminates with 𝑥𝑖 aligned to 

a gap. In conclusion, let 𝐼𝑦(𝑖, 𝑗) represent 

the ideal alignment score between 𝑥1. . . 𝑥𝑖 

and 𝑦1. . . 𝑦𝑗 for 𝑖 =  1, . . . , 𝑛 and 𝑗 =

1, . . . , 𝑚 provided that the alignment 

terminates with 𝑦𝑗 aligned to a gap.The 

following recurrence relations result from 

assuming that an insertion never comes 

directly after a deletion (unless the deletion 

occurs at the start of an alignment): 
                                   𝑀(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖 , 𝑦𝑗), 

 𝑀(𝑖, 𝑗)  = 𝑚𝑎𝑥 { 𝐼𝑥(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖𝑦𝑗), 
                                        𝐼𝑦(𝑖 − 1, 𝑗 − 1) + 𝑠( 𝑥𝑖 , 𝑦𝑗)       
                                                                                        
                                                                                        
                                                                                       (7) 

  

 
                                               𝑀(𝑖 − 1, 𝑗) − 𝑑, 
                     𝐼𝑥(𝑖, 𝑗) = 𝑚𝑎𝑥  {    𝐼𝑥(𝑖 − 1, 𝑗) − 𝑒 

                                                                      

(8) 
                              𝑀(𝑖, 𝑗 − 1) − 𝑑, 

 𝐼𝑦(𝑖, 𝑗)  = 𝑚𝑎𝑥 {  𝐼𝑦(𝑖, 𝑗 − 1) − 𝑒 

                                                                                       (9) 

 

After we set 𝑀(0,0) = 0 to begin the 

process, we may use these recurrence 

relations to fill up the matrices 𝑀, 𝐼𝑥, and 

𝐼𝑦. The option is not considered in 

computations if, for some 𝑖 and 𝑗, one of the 

options in the right-hand sides of the 

recurrence relations is not defined (for 

example, in the formula for 𝑀(1,2), the 

right-hand side comprises  𝐼𝑥(0,1) and 

𝐼𝑦(0,1)). 

max{𝑀(𝑛, 𝑚), 𝐼𝑥(𝑛, 𝑚), 𝐼𝑦(𝑛, 𝑚)} is the 

optimal alignment score, and the traceback 

begins at the element (or elements) that 

realize this maximum. 

  

2.4   Multiple Alignment 

Common properties between a group of 

sequences are frequently of interest to 

sequence analysis researchers. Establishing 

the best multiple alignment for the entire 

collection is necessary in order to find such 
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a feature. Similar to when dealing with two 

sequences, the ability to score any multiple 

alignment using a scoring method is 

necessary to create an ideal multiple 

alignment. Much like with two sequences, 

the majority of alignment techniques utilize 

a scoring function of the kind, assuming 

that each column in an alignment without 

gaps is independent. 

             𝑆(𝑀)  = 𝐺(𝑀) + ∑𝑖 𝑠(𝑀𝑖), 
                                                                    

(10) 

 

where 𝑀 indicates a multiple alignment, 𝑀𝑖 

is the ith column without a gap, 𝑠(𝑀𝑖) is 

𝑀𝑖’s score, and 𝐺 is a function for scoring 

gaps in columns. The typical (but 

unsatisfactory) techniques for assigning 

multiple alignments and gaps-free columns 

are assessed using the ”sum of pairs” (SP) 

function. For a column Mi that does not 

contain gaps, the SP-score is defined as 

   𝑠(𝑀𝑖)  =  ∑𝑘<𝑙 𝑠(𝑀𝑘𝑖, 𝑀𝑙𝑖), 
                                                                   

(11) 

in which all pairs (𝑀𝑘𝑖, 𝑀𝑙𝑖), 𝑘 <
𝑙 elements of 𝑀𝑖 are added up, and the 

scores 𝑠(𝑎, 𝑏),3 for𝑎, 𝑏 ∈  𝑄, originate 

from a substitution matrix that is utilized to 

rate pairwise sequence alignments. In order 

to score gaps,  𝑠(−, 𝑎) = 𝑠(𝑎, −) is 

frequently defined.for columns with gaps, 

introducing the relevant SP-score and 

setting 𝑠(−, −)  =  0. Any method of 

scoring gap areas in this way is referred to 

as a linear gap model for multiple 

alignments. The SP-score has no statistical 

basis, despite the seeming common sense of 

adding together all pairwise substitution 

scores. Pairwise dynamic programming 

algorithms can be extended 

 to align 𝑛 ≥  3 sequences once a system 

for scoring multiple alignments has been 

established. When faced with several 

alignment challenges, one is typically 

interested in subsequently, a generalization 

of the Needleman-Winsch technique in 

global alignments. Here, we’ll assume a 

score system that  

 

 

                          𝑆(𝑀)  = ∑𝑖 𝑠(𝑀𝐼), 
                                                                    

(12) 

 

 adding up all of the alignment’s columns, 

even the ones with gaps in them. We 

observe that an affine gap model is also 

available for a multidimensional dynamic 

programming approach.Assume that we 

have n sequences: 𝑥1 = 𝑥1
1. . . 𝑥𝑚1

1 , 𝑥2 =
𝑥1

2. . . 𝑥𝑚2
2 , . . . , 𝑥𝑛 = 𝑥1

𝑛. . . 𝑥𝑚𝑛
𝑛 . For each 

integer 𝑖1, . . . , 𝑖𝑛 , 𝑗 = 1, . . . , 𝑛, where at 

least one number is non-zero, we have 0 ≤
 𝑖𝑗  ≤  𝑚𝑗. Give 𝐹(𝑖1, . . . , 𝑖𝑛) the maximal 

score of an alignment of the subsequences 

that terminate in 𝑥𝑖1
1 . . . 𝑥𝑖𝑛

𝑛  (the other 

subsequences are aligned to a gap region if 

for any 𝑗 we have 𝑖𝑗 = 0. The dynamic 

programming algorithm’s recursion stage 

can be found via where all combinations of 

gaps occur except the one where all 

residues are replaced by gaps. The 

algorithm is initialized by 

setting𝐹(0, . . . ,0)  =  0. Traceback starts at 

𝐹(𝑚1, . . . , 𝑚𝑛) and is analogous to that for 

pairwise alignments. The matrix 

𝐹(𝑖1, . . . , 𝑖𝑛) with 0 ≤  𝑖𝑗  ≤  𝑚𝑗, 𝑗 =

 1, . . . , 𝑛, is an (𝑚1 + 1) ×. . .×  (𝑚𝑛 + 1)-

matrix, and it is convenient to visualize it 

by considering its two-dimensional 

sections. 

2.5   MSA 

Based on the multi-dimensional dynamic 

programming algorithm, MSA always 

identifies all optimal alignments. Reducing 

the amount of components in the dynamic 

programming matrix that must be inspected 

in order to identify the best multiple 

alignment is the goal. Protein sequences up 

to 300 residues long can be properly 

aligned using MSA. Since we are assuming 

an SP-scoring scheme with a linear gap 

model for both residues and gaps in this 

instance, the multiple alignment’s score is 

the total of all the pairwise alignments that 

the multiple alignment causes. Let 𝑘𝑡ℎ and 
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𝑙𝑡ℎ sequences be denoted by 𝑀𝑘𝑙, and let M 

represent a multiple alignment. Next up, we 

have 

 

             𝑆(𝑀)  =  ∑𝑘<𝑙 𝑆(𝑀𝑘𝑙), 
                                                                   

(14) 

 

where the 𝑀𝑘𝑙 score is denoted 

by𝑆(𝑀𝑘𝑙). 𝑆(𝑀𝑘𝑙)  ≤  𝑠𝑘𝑙, evidently, if 𝑠𝑘𝑙 

is the score of an ideal global alignment 

between the kth and lth sequences.Let us 

assume that we have a lower bound τ for the 

ideal multiple alignment score. Any 

heuristic multiple alignment approach, like 

the Star Alignment algorithm that is 

covered below, can find such a bound 

quickly and with some degree of precision. 

Consequently, we have for an ideal 

multiple alignment 𝑀0 

 

 𝜏 ≤  𝑆(𝑀0) =  ∑𝑘1<𝑙1 𝑆(𝑀𝑘𝑙0) − 𝑠𝑘𝑙 +

∑𝑘1<𝑙1 𝑠𝑘1𝑙1 ,  
                                                                    

(15) 

 

 for all 𝑘 and 𝑙. Hence 𝑆(𝑀𝑘1𝑙10)  ≥  𝑡𝑘𝑙, 

where 

             𝑡𝑘𝑙 = 𝜏 + 𝑠𝑘𝑙  −  ∑𝑘1<𝑙1 𝑠𝑘1𝑙1.           

(16) 

 

By calculating the scores of the pairwise 

optimal alignments in the right-hand side of 

the formula above, as was covered in the 

sections before, it is possible to compute 

𝑡𝑘𝑙, at least roughly. Therefore, all that is 

required of us is to search for such multiple 

alignments that produce pairwise 

alignments with scores at least equal to 𝑡𝑘𝑙. 

By significantly reducing the number of 

elements in the multi-dimensional dynamic 

programming matrix that require 

examination, this insight leads to a boost in 

computational speed. 

 

2.6   Star Alignment 

A quick and efficient heuristic technique 

for generating several alignments is the Star 

Alignment algorithm. Naturally, it cannot 

ensure that an ideal alignment will be 

found, just like any other heuristic 

approach. The fundamental idea is to use 

the sequence that most closely resembles all 

the other sequences as the center of a ”star” 

that aligns all the other sequences with it. 

3 RESULT 

In this section, we will employed dynamic 

programming algorithms to analyze DNA 

samples obtained from different ciliates 

during meiotic reproduction. Specifically, 

we utilized five distinct dynamic 

programming schemes, namely global 

alignment, local alignment, affine gap 

model, star alignment, and multiple 

alignment, to model the DNA sequences 

and identify patterns and similarities among 

the samples. 

3.1 Global Alignment with the  Needleman-

Wunsch algorithm 

Let x = CTTAGA, y = GTAA, and suppose 

that we are using the scoring scheme: 

𝑠(𝑎,𝑎)=1, 𝑠(𝑎,𝑏)=−1, if 𝑎≠𝑏, and 

𝑠(−,𝑎)=𝑠(𝑎,−)=−2. The corresponding 

matrix F with pointers is derived 

 _ G T A A 

_ 0 -2← -4 ← -6← -8← 

C -2 ↑ -1 ↖ -3 ↖ 

← 

-5 ↖ 

← 

-7 ↖ 

← 

T -4↑ -3 ↖ 

↑ 

0 ↖ -2 ← -4 ← 

T -6↑ -5 ↑ 

↖ 

-2 ↖ ↑ -1 ↖ -3 ↖ 

← 

A -8↑ -7 ↑ 

↖ 

-4 ↑ -1 ↖ 0 ↖ 

G -

10↑ 

-7↖ -6 ↑ -3↑ -2↑ 

A -

12↑ 

-9 ↑ -8 ↑ ↖ -5 ↑ ↖ -2 ↖ 

Tracing back the pointers gives the 

following three optimal alignments 
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x: CTTAGA 

                              y: G_TA_A 

x: CTTAGA 

                              y: GT_A_A 

x: CTTAGA 

                              y: _GTA_A 

With score −2. The 

corresponding paths through 

the matrix 𝐹 are shown with 

arrows. 

Again let, 𝑥= CCATACGA, 

𝑦= CAG C T A G C G, and 

suppose that we are using 

the scoring scheme: 

𝑠(𝑎, 𝑎)=1, 𝑠(𝑎, 𝑏)=−1,  if 

𝑎≠𝑏, and  𝑠(−,𝑎)=𝑠(𝑎, −)= -1. 

 

 – C C A T A C G A 

– 0 -1 -2 -3 -4 -5 -6 -7 -8 

C -1 1 0 -1 -2 -3 -4 -5 -6 

A -2 0 0 1 0 -1 -2 -3 -4 

G -3 -1 -1 0 0 -1 -2 -1 -2 

C -4 -2 0 -1 -1 -1 0 -1 -2 

T -5 -3 -1 -1 0 -1 -1 -1 -2 

A -6 -4 -2 0 -1 1 0 -1 0 

G -7 -5 -3 -1 -1 0 0 1 0 

C -8 -6 -4 -2 -2 -1 1 0 0 

G -9 -7 -5 -3 -3 -2 0 2 1 

This gives ; 

x _ C A G C T A G C G _ 

y C C A _ _ T A _ C G A 

3.2  Local Alignment with Smith-Waterman 

algorithm 

For the sequences  x = CTTAGA, y = 

GTAA, the local alignment becomes; 

 _ G T A A 

_ 0 0 0 0 0 

C 0 0 0 0 0 

T 0 0 ↖ 1 0 0 

T 0 0 ↖ 1 ↖0 0 

A 0 0 0 ↖2 ↖1 

G 0 ↖ 1 0 ↑ 0 ↖ 1 

A 0 0 ↖ 0 ↖1 ↖1 

The only best local alignment is: 

𝑥 : 𝑇 𝐴
𝑦 : 𝑇 𝐴

 

and its score is equal to 2, where the arrows 

represent traceback. Note that if an element 

of 𝐹 is equal to 0 and no arrows come out 

of the cell containing this element, then the 

element is obtained as the first option in 

formula (6). 

Considering, 𝑥 = C C A T A C G A, 𝑦 =
C A G C T A G C G, and suppose that we are 

using the scoring scheme: 𝑠(𝑎, 𝑎) =
1, 𝑠(𝑎, 𝑏) = −1, if 𝑎 ≠ 𝑏, and 𝑠(−, 𝑎) =
𝑠(𝑎, −) = −1. 

 – C C A T A C G A 

– 0 0 0 0 0 0 0 0 0 

C 0 1 1 0 0 0 1 0 0 

A 0 0 0 2 1 1 0 0 1 

G 0 0 0 1 1 0 0 1 0 

C 0 1 1 0 0 0 1 0 0 

T 0 0 0 0 1 0 0 0 0 

A 0 0 0 1 0 2 1 0 1 

G 0 0 0 0 0 1 1 2 1 

C 0 1 1 0 0 0 2 1 1 

G 0 0 0 0 0 0 1 3 2 

The optimal score corresponds to the 3 in 

the last row, but second to last column. The 

optimal path results in an alignment with 

four matching positions. The traceback 

matrix can be built while computing the 

alignment matrix, and all paths are halted 

when a score of zero is reached. For Smith-
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Waterman, we typically report just the sub-

alignment corresponding to the positive 

scores. We can report an alignment 

consisting of just the two sequences. 

x T A G C G 

y T A _ C G 

3.3  Alignment with Affine Gap Model 

Let 𝑥 = ACGGTAC, 𝑦 = GAGGT, the score 

of any match be equal to 1, the score of any 

mismatch be equal to -1, 𝑑 = 3 and 𝑒 = 2. 

Then we get the dynamic programming 

matrices; 

M _ G A G G T 

_ 0 ←
-3 

← -5 ← -7 ← -9 ← -

11 

A -3 

↑ 

↖ 

-1 

↖ -2 ↖ -6 ↖ -8 ↖ -

10 

C -5 

↑ 

↖ 

-4 

↖ -2 ↖ -3 -6 -8 

     𝐼𝑦(1,3) 𝐼𝑦(1,4) 

G -

7↑ 

↖
-4 

↖-5 ↖-1 ↖-2 ↖-7 

   𝐼𝑥(2,1)   𝐼𝑦(2,4) 

G -

9↑ 

↖
-6 

↖-5 ↖-4 ↖0 ↖-3 

    𝐼𝑥(3,2)   

T -

11

↑ 

↖
-

1

0 

↖-7 ↖-6 ↖-5 ↖1 

     𝐼𝑥(4,3)  

A -

13

↑ 

↖
-

1

2 

-8 ↖-8 ↖-7 -4 

   𝐼𝑥(5,1)  𝐼𝑥(5,3) 𝐼𝑥(5,4) 

C -

15

↑ 

↖
-

1

4 

-12 ↖-9 ↖-9 -6 

   𝐼𝑥(6,1)  𝐼𝑥(6,3) 𝐼𝑥(6,4) 

 

𝐼𝑥 G A G G T 

A -6 -8 -10 -12 -14 

 𝑀(0,1) 𝑀(0,2) 𝑀(0,3) 𝑀(0,4) 𝑀(0,5) 

C -4 -5 -9 -11 -13 

 𝑀(1,1) 𝑀(1,2) 𝑀(1,3) 𝑀(1,4) 𝑀(1,5) 

G ↑ -6 -5 -6 -9 -11 

  𝑀(2,2) 𝑀(2,3) 𝑀(2,4) 𝑀(2,5) 

G -7 ↑-7 -4 -5 -10 

 𝑀(3,1)  𝑀(3,3) 𝑀(3,4) 𝑀(3,5) 

T ↑ -9 -8 ↑-6 -3 -6 

 𝑀(4,1) 𝑀(4,2)  𝑀(4,4) 𝑀(4,5) 

A ↑ -11 ↑ -10 ↑ -8 ↑ -5 -2 

  𝑀(5,2)   𝑀(5,5) 

C ↑-13 -11 ↑-10 ↑ -7 ↑ -4 

  𝑀(6,2)    

 

𝐼𝑦 G A G G T 

A -6 -4 -5 ← -7 ← -9 

 𝑀(1,0) 𝑀(1,1) 𝑀(1,2)   

C -8 -7 -5 -6 ← -8 

 𝑀(2,0) 𝑀(2,1) 𝑀(2,2) 𝑀(2,3)  

G -10 -7 -8 -4 -5 

 𝑀(3,0) 𝑀(3,1) 𝑀(3,2) 𝑀(3,3) 𝑀(3,4) 

G -12 -9 -8 -7 -3 

 𝑀(4,0) 𝑀(4,1) 𝑀(4,2) 𝑀(4,3) 𝑀(4,4) 

T -14 -13 -10 -9 -8 

 𝑀(5,0) 𝑀(5,1) 𝑀(5,2) 𝑀(5,3) 𝑀(5,4) 

A -16 -15 -11 -11 -10 

 𝑀(6,0) 𝑀(6,1) 𝑀(6,2) 𝑀(6,3) 𝑀(6,4) 

C -18 -17 -15 -12 -12 

 𝑀(7,0) 𝑀(7,1) 𝑀(7,2) 𝑀(7,3) 𝑀(7,4) 

The arrows and labels indicate from which 

elements of the three matrices each number 

was produced (in addition, we draw the 

vertical and horizontal arrows in the 0th 

column and 0th row of the matrix M). The 

thick arrows show traceback; it starts at 
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𝐼𝑥(7,5) = −4. The corresponding optimal 

alignment with score -4 is: 

𝑥:  𝐴 𝐶 𝐺 𝐺 𝑇 𝐴 𝐶
𝑦:  𝐺 𝐴 𝐺 𝐺 𝑇 _ _

 

There are many other variants of the basic 

dynamic programming algorithm: for 

overlap matches, repeated matches, more 

complex gap models, etc. 

3.4  Multiple Alignment 

We will find all optimal alignments of the 

three sequences 𝑥 = AATC, 𝑦 = GTC, 𝑧 =
AAG using the following scoring scheme: 

the score of an alignment is calculated from 

the scores of its columns 𝑀𝑖’s from formula 

(12); if 𝑀𝑖 contains three identical symbols, 

set 𝑠(𝑀𝑖) = 2; if it contains exactly two 

identical symbols, but no gaps, set s(Mi)=1; 

if it contains three distinct symbols, but no 

gaps, set s(Mi)=-1, if it contains exactly one 

gap, set 𝑠(𝑀𝑖) = −2; if it contains two 

gaps, set 𝑠(𝑀𝑖) = −4. In this case, the 

indices i1,  i2 and  i3 correspond to 

sequences x, y and z respectively. 

𝐹(∗,
∗ ,0) 

_ G T C 

_ 0 ← -4 ← -8 ← -12 

A ↑ -4 ↖ -2 ← ↖ -

6 

← ↖ -

10 

A ↑ -8 ↑ -6 ↖ ↖ -4 ← ↖ -8 

T ↑ -

12 

↑ -10 

↖ 

↑ -8 ↖ ↖ -6 

C ↑ -

16 

↑ -14 

↖ 

↑ -12 

↖ 

↑ -10 

↖ 

 

𝐹(∗,
∗ ,1) 

_ G T C 

_ -4 -2 ← -6 ← -10 

 𝐹(0,0,0) 𝐹(0,0,0) 𝐹(0,1,0) 𝐹(0,2,0) 

A -2 1 ← -3 ← -7 

 𝐹(0,0,0) 𝐹(0,0,0) 𝐹(0,1,0) 𝐹(0,2,0) 

A -6 ↑ -3 ↑ -1 ↖ ← -5 ↖ 

 𝐹(1,0,0) 𝐹(1,0,0) 𝐹(1,1,0) 𝐹(1,2,0) 

T -10 ↑ -7 ↑ -5 ↖ ↖ -3 

 𝐹(2,0,0)  𝐹(2,1,0)  

C -14 ↑ -11 ↑ ↖ -9 ↑ ↖ -7 ↑ 

 𝐹(3,0,0)   𝐹(3,2,0) 

 

𝐹(∗,
∗ ,2) 

_ G T C 

_ -8 -6 -4 ← -8 

 𝐹(0,0,1) 𝐹(0,1,1) 𝐹(0,1,1) 𝐹(0,2,1) 

  𝐹(0,0,1)   

A -6 -3 -1 ← -5 

 𝐹(1,0,1) 𝐹(1,1,1) 𝐹(1,1,0) 𝐹(1,2,1) 

 𝐹(0,0,1) 𝐹(0,1,1) 𝐹(0,1,1) 𝐹(0,2,1) 

A -4 -1 2 ← -2 

 𝐹(1,0,1) 𝐹(1,1,1) 𝐹(1,1,1) 𝐹(1,2,1) 

  𝐹(1,0,1)   

T -8 ↑ -5 ↑ -2 ↑ ↖ 0 

 𝐹(2,0,1) 𝐹(2,1,1) 𝐹(2,1,1)  

C -12 ↑ -9 ↑ -6 ↑ ↖ -4 ↑ 

 𝐹(3,0,1) 𝐹(3,1,1)  𝐹(3,2,1) 

 

𝐹(∗,
∗ ,3) 

_ G T C 

_ -12 -10 -8 -6 

 𝐹(0,0,2) 𝐹(0,1,2) 𝐹(0,2,2) 𝐹(0,2,2) 

  𝐹(0,0,2) 𝐹(0,1,2)  

A -10 -7 -5 -3 

 𝐹(1,0,2) 𝐹(1,1,2) 𝐹(1,2,2) 𝐹(1,2,2) 

 𝐹(0,0,2) 𝐹(0,0,2) 𝐹(1,1,2)  

A -8 -5 -2 0 

 𝐹(1,0,2) 𝐹(2,1,2) 𝐹(2,2,2) 𝐹(2,2,2) 

 𝐹(2,0,2) 𝐹(1,1,2)   

  𝐹(1,0,2)   

T -6 -3 0 1 

 𝐹(2,0,2) 𝐹(2,1,2) 𝐹(2,2,2) 𝐹(2,2,2) 

  𝐹(2,0,2) 𝐹(2,1,2)  
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C ↑ -10 ↑ -7 ↑ -4 -1 

 𝐹(3,0,2) 𝐹(3,1,2) 𝐹(3,2,2) 𝐹(3,2,2) 

  𝐹(3,0,2)   

As before, the arrows and labels indicate 

from which elements each number was 

derived. The shaded cells and arrows 

correspond to traceback; it starts at 

𝐹(3,2,2) = −1 and goes through the 

shaded cells until we reach 𝐹(0,0,0). The 

traceback produces the following three 

paths: 

𝐹(3,2,2) → 𝐹(2,1,1) → 𝐹(1,0,0)
→ 𝐹(0,0,0) 

𝐹(3,2,2) → 𝐹(2,1,1) → 𝐹(1,1,1)
→ 𝐹(0,0,0) 

𝐹(3,2,2) → 𝐹(2,2,2) → 𝐹(1,1,1)
→ 𝐹(0,0,0) 

They respectively give rise to the following 

three optimal alignments with score -1: 

𝑥:  𝐴 𝐴 𝑇 𝐶
𝑦:  − 𝐺 𝑇 𝐶
𝑧:  − 𝐴 𝐴 𝐺

 

𝑥:  𝐴 𝐴 𝑇 𝐶
𝑦:  𝐺  −  𝑇 𝐶
𝑧:  𝐴  −  𝐴 𝐺

 

𝑥:  𝐴 𝐴 𝑇 𝐶
𝑦:  𝐺 𝑇  −  𝐶
𝑧:  𝐴 𝐴  −  𝐺

 

Because of the memory and time 

complexity, the above algorithm in practice 

cannot be applied to align a large number of 

sequences. Therefore, alternative 

algorithms (mainly heuristic) have been 

developed. Below we briefly mention some 

of them.                        
 

3.5    Star Alignment 

Suppose we are given the following five 

DNA sequences: 

 

                      𝑥1 ∶ A T T G C C A T T 

                      𝑥2 ∶ A T G G C C A T T 

                      𝑥3 ∶ A T C C A A T T T T 

                       𝑥4: A T C T T C T T 

                      𝑥5 ∶ A C T G A C C 

      

We assume the same scoring scheme for 

pairwise alignments as in the global 

alignment section and consider the 

corresponding SP-scoring scheme with 

linear gap model. We calculate all pairwise 

optimal scores (that is, the scores found by 

the global pairwise alignment algorithm 

described), write them in the matrix below, 

and find the sum in each row: 

 

            𝑥1   𝑥2   𝑥3   𝑥4   𝑥5    Total Score 

      𝑥1          7   -2     0    -3           2 

      𝑥2    7         -2     0    -4           1 

      𝑥3   -2   -2           0    -7        -11 

      𝑥4    0    0     0          -3          -3 

      𝑥5   -3  -4    -7    -3               -17 

  

Of all the sequences, 𝑥1 has the best total 

score (equal to 2) and is selected to be at the 

center of the future star. The optimal 

alignments between 𝑥1 and each of the 

other sequences found by the global 

alignment algorithm from Sect. 4.1 are as 

follows: 

  

                 𝑥1 : A T T G C C A T T 

                 𝑥2 : A T G G C C A T T 

                 𝑥1 : A T T G C C A T T _ _ 

                 𝑥3 : A T C - C A A T T T T 

                 𝑥1 : A T T G C C A T T 

                 𝑥4 : A T C T T C _ T T 

                 𝑥1 : A T T G C C A T T 

                 𝑥5 : A C T G A C C _ _ 

 

We now merge the above alignments using 

the” once a gap– always a gap” principle. 

We start with  𝑥1 and 𝑥2: 

  

                   𝑥1 : A T T G C C A T T 

                   𝑥2 : A T G G C C A T T 

 

and add 𝑥3, but since 𝑥3 is longer than 𝑥1 

and 𝑥2, we add gaps at the ends of 𝑥1 and 

𝑥2: 

 

                   𝑥1 : A T T G C C A T T _ _ 
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                   𝑥2 : A T G G C C A T T _ _ 

                   𝑥3 : A T C _C A A T T T T 

 

3. CONCLUSION 

In conclusion, this study demonstrates the 

effectiveness of dynamic programming 

algorithms in analyzing DNA sequences 

obtained from different ciliates during 

meiotic reproduction. By using a 

combination of global and local alignment 

algorithms, affine gap and star alignment 

algorithms, and multiple alignment 

algorithms, we were able to identify 

conserved regions and patterns in the DNA 

sequences, and construct DNA sequences 

that reflected the evolutionary relationships 

among the ciliates. Our findings have 

important implications for our 

understanding of the evolution and 

diversity of ciliates and other organisms, 

and highlight the utility of dynamic 

programming algorithms in analyzing 

complex biological data. Future research in 

this area could build on our findings by 

utilizing these algorithms to analyze DNA 

sequences from a wider range of organisms, 

and by incorporating additional data 

sources to further refine our understanding 

of the evolutionary relationships among 

these organisms. 
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