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ABSTRACT 

Antiretroviral Therapy (ART) has revolutionized the management of 

HIV/AIDS, significantly reducing morbidity and mortality rates among 

infected individuals. This study explores the effects of Antiretroviral 

Therapy (ART) on the transmission dynamics of HIV, employing a 

mathematical modeling approach to analyze the interactions between 

various population compartments. The study demonstrates that ART 

significantly lowers viral loads to undetectable levels, thereby reducing the 

risk of HIV transmission. Through sensitivity analysis, we identify key 

parameters influencing treatment outcomes, particularly highlighting the 

critical role of ART adherence and initiation rates in shaping community 

transmission dynamics. The findings emphasize the necessity of addressing 

barriers to ART access and adherence, especially among vulnerable 

populations. Furthermore, this work contributes to public health strategies 

aimed at achieving the UNAIDS 90-90-90 targets by providing insights into 

the effectiveness of ART as a cornerstone of HIV prevention and treatment 

programs. Overall, our analysis underscores the importance of continued 

research and innovation in HIV management to enhance treatment efficacy 

and improve health outcomes for individuals living with HIV. 
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1. INTRODUCTION 

Human Immunodeficiency Virus 

(HIV) remains a critical global health issue, 

with millions affected and new infections 

occurring daily. Antiretroviral Therapy 

(ART) has transformed HIV/AIDS from a 

fatal disease into a manageable chronic 

condition. This study explores ART's impact 

on HIV transmission, focusing on viral load 

suppression, transmission rates, and broader 

public health implications. 

Mathematical models, such as the 

Susceptible-Infectious-Treated (SIT) model, 

help simulate disease progression and ART's 

effects (Cohen et al., 2011). ART suppresses 

HIV replication, reducing viral loads to 

undetectable levels. The "Undetectable = 

Untransmittable" (U=U) principle reflects the 

inability of individuals with undetectable 

viral loads to transmit the virus sexually 

(Smith and Wagner, 2023). ART also reduces 

morbidity, mortality, and community-level 

incidence, supporting the treatment-as-

prevention (TasP) strategy (Delaney et al., 

2022). However, adherence remains critical 

to maintaining viral suppression (Chang et 

al., 2023). Pre-Exposure Prophylaxis (PrEP), 

including long-acting injectable options, has 
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proven effective in high-risk populations, 

though adherence challenges persist, 

particularly among young women in sub-

Saharan Africa (Molina et al., 2022; Grant et 

al., 2023). 

Behavioral and structural 

interventions also play vital roles. Digital 

tools and community-based programs 

promote safer practices and PrEP uptake, 

emphasizing culturally tailored approaches 

for groups like men who have sex with men 

(MSM) (Schnall et al., 2023; Jones et al., 

2024). Social determinants such as housing 

instability and gender-based violence 

influence transmission, highlighting the need 

for integrated strategies (Smith et al., 2023; 

Wilson et al., 2024). The COVID-19 

pandemic disrupted HIV services but 

expanded telehealth opportunities 

(Kalichman et al., 2023). Promising advances 

in HIV vaccine research, particularly mRNA-

based trials, offer hope (Nguyen et al., 2024). 

Key populations, including sex 

workers and transgender individuals, face 

ongoing challenges. Legal reforms and harm 

reduction strategies are essential to 

improving access (Beyrer et al., 2023; Jin et 

al., 2022). Despite progress in ART and 

PrEP, socioeconomic disparities and stigma 

persist as barriers (Garcia et al., 2024; 

Johnson et al., 2022). Emerging technologies 

like artificial intelligence and integrated care 

for co-infections present opportunities for 

improved prevention (Zhang et al., 2023; 

Rodriguez et al., 2022). Continued research 

and innovation are crucial to addressing HIV 

across diverse populations. 

This study underscores the need for 

continued research into HIV transmission 

dynamics. Evolving treatments like ART and 

PrEP and innovations in digital health require 

updated approaches to HIV prevention and 

treatment, particularly across diverse 

populations affected by social and economic 

barriers. 

 

2. MATHEMATICAL 

FORMULATION 

The study of the “Effects of 

Antiretroviral Therapy (ART) on the 

Transmission Dynamics of HIV” seeks to 

understand how treatment interventions 

influence the progression and spread of HIV 

within a population. In this context, 

mathematical modeling is a valuable tool, 

allowing us to capture the complex interplay 

between infection, treatment, recovery, and 

progression to AIDS within a population. The 

model divides the total population into 

several key compartments: susceptible 

individuals (S(t)), those infected with HIV 

(I(t)), individuals receiving ART (T(t)), 

vaccinated individuals (V (t)), recovered 

individuals (R(t)), and individuals who have 

progressed to AIDS (A(t)). Each 

compartment has specific dynamics that 

influence both the spread of HIV and the 

effectiveness of ART interventions. These 

compartments interact through several 

pathways, such as infection from susceptible 

to infected states, treatment from infected to 

ART-receiving states, and progression from 

HIV to AIDS. 

The compartmental model that 

provides a framework for analyzing the 

transmission dynamics of HIV under the 

influence of ART is given if Fig. 1 below.  
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Figure 3.1: Compartmental Diagram for HIV Transmission Dynamics with ART 

From the above compartments diagram, the corresponding system of equation for the 

problem under consideration becomes: 

𝑑𝑆(𝑡)

𝑑𝑡
=  Λ + 𝜎𝑇(𝑡) −

𝛽𝑆(𝑡)

𝑁
(1 −

𝑃

𝐾
) 𝐼(𝑡)  − 𝜔𝑆(𝑡) 𝐼(𝑡) −  µ𝑆(𝑡)                         (1) 

𝑑𝐼

𝑑𝑡
=

𝛽𝑆(𝑡)

𝑁
(1 −

𝑃

𝐾
) 𝐼(𝑡)   −  𝛾𝐼(𝑡)  −  (µ + µ𝐼  +  𝛿𝐼 +  𝜈 +  𝜆)𝐼(𝑡)               (2) 

𝑑𝑇

𝑑𝑡
=  𝛾𝐼(𝑡)  +  𝜉𝐴(𝑡) + (𝛼 −  𝜂 −  µ − 𝛿𝑇  −  µ𝑇) 𝑇(𝑡)  +  𝜌𝑉(𝑡)                  (3) 

𝑑𝑉

𝑑𝑡
=  𝜔𝑆(𝑡)𝐼(𝑡) + 𝜈𝐼(𝑡) −  𝛼𝑇(𝑡)  − ( 𝛿 +  𝜌)𝑉(𝑡)                                                (4) 

𝑑𝑅

𝑑𝑡
=  𝜂𝑇(𝑡)  − (𝜙 +  𝜌 +  µ)𝑅(𝑡)                                                                                 (5) 

𝑑𝐴

𝑑𝑡
=  𝜆𝐼(𝑡)  + ( 𝜌 +  𝜙)𝑅(𝑡)  − (𝜉 +  µ𝐴  +  µ)𝐴(𝑡)                                             (6) 

Table 1: Parameter definitions and values for HIV transmission model with ART effects 

Parameter  Definition  Value  Units 

Λ Recruitment rate into the population  0.01 individuals/day 

µ  Natural death rate  0.02 1/year 

𝜎  Rate of ART initiation  0.02  1/day 

𝛽  HIV transmission rate  0.01  1(individual day) 

𝑁  Total population size  100,000  individuals 

𝐾  AIDS population carrying capacity  1000  individuals 

𝜔  HIV-induced immune activation rate  0.12  1/day 

𝛾  Progression rate from infected to treated class  0.1  1/day 

µ𝐼  HIV-induced death rate for infected individuals  0.01  1/day 

𝛿𝐼  Additional mortality due to HIV  0.005  1/day 

𝜈  Rate of viral rebound  0.01  1/day 

𝜆  Rate of progression to AIDS  0.01  1/day 

𝜉  Rate of ART effect on AIDS population  0.01  1/day 

𝛼  Rate of viral activation in treated class  0.01  1/day 
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𝜂  Rate of immune system recovery  0.05 1/day 

𝛿𝑇  Additional mortality due to ART  0.02  1/day 

µ𝑇   Natural death rate in treated population  0.01  1/year 

𝜌  Loss rate from recovery to reinfection  0.01  1/day 

𝛿  Rate of viral decay  0.01  1/day 

𝜙  Rate of immune activation in recovered class  0.005  1/day 

µ𝐴  Natural death rate in AIDS class  0.05  1/year 

The initial data are  

𝑆(0) =  5,000, 𝐼(0) =  100, 𝑇(0) =  50, 𝑉(0) =  5, 𝑅(0) =  5, 𝐴(0) =  20                  (7) 

3. MODEL ANALYSIS 

This study utilizes a mixed-methods 

approach, combining quantitative with 

qualitative analysis of epidemiological data. 

The effectiveness of ART in reducing HIV 

transmission is analyzed through modeling 

and comparative analysis of ART coverage 

and HIV incidence rates across different 

compartment. 

3.1 Positivity of Solutions 

For biological models, the state variables 

represent population subgroups (such as the 

susceptible population 𝑆(𝑡), infected 

population 𝐼(𝑡), etc.). Since populations 

cannot be negative, it’s important to establish 

that the solutions to the system are non-

negative for all 𝑡 ≥  0, given non-negative 

initial conditions. 

 

Theorem (Positivity of Solutions) 

Consider the system of differential equations 

(1) – (6) subject to (7), governing the 

dynamics of HIV transmission under ART 

with initial conditions 𝑆(0)  ≥  0, 𝐼(0)  ≥
 0, 𝑇(0)  ≥  0, 𝑉 (0)  ≥  0, 𝑅(0)  ≥  0, and 

𝐴(0)  ≥  0. Then, the solutions 

𝑆(𝑡), 𝐼(𝑡), 𝑇(𝑡), 𝑉 (𝑡), 𝑅(𝑡), and 𝐴(𝑡) remain 

non-negative for all 𝑡 ≥  0. 

Proof 

By assumption, each variable 

𝑆(0), 𝐼(0), 𝑇(0), 𝑉 (0), 𝑅(0), 𝐴(0)  ≥  0. 

From (1), has a recruitment term Λ and a 

positive transfer term 𝜎𝑇(𝑡). Loss terms are 

proportional to 𝑆(𝑡) itself or 𝑆(𝑡)𝐼(𝑡), which 

implies that as long as 𝑆(0)  ≥  0, 𝑆(𝑡) 

remains non-negative for 𝑡 ≥  0. Hence, 

𝑆(𝑡)  ≥  0 𝑓𝑜𝑟 𝑡 ≥  0. 
From equation (2),  

𝑑𝐼

𝑑𝑡
≥   − 𝛾𝐼(𝑡)  

−   (µ + µ𝐼  +  𝛿𝐼 +  𝜈 
+  𝜆)𝐼(𝑡)   

Which implies 

ln 𝐼(𝑡) ≥    −  (𝛾 + µ + µ𝐼  +  𝛿𝐼 +  𝜈 +  𝜆)𝑡
+ 𝐶 

That is 

𝐼(𝑡)
≥ 𝐿 exp(−(𝛾 + µ + µ𝐼  + 𝛿𝐼 +  𝜈 
+  𝜆)𝑡)                                                   (8) 

where 𝐿 = 𝑒𝐶 is a constant. Since 

exponential is a non-negative number, it then 

implies that, 𝐼(𝑡)  ≥  0 for 𝑡 ≥  0. 

So also, from equations (3) – (6), 

following the same procedure we have 

𝑇(𝑡) ≥ 𝐿1𝑒
−( 𝜂+ µ+ 𝛿𝑇+µ𝑇)𝑡, 𝑅(𝑡)

≥ 𝐿2𝑒
−(𝜙+ 𝜌+ µ)𝑡, 𝐴(𝑡)

≥ 𝐿3𝑒
−(𝜉 + µ𝐴 + µ)𝑡               (9) 

By equation (4),  
𝑑𝑉

𝑑𝑡
≥  − 𝛼𝑇(𝑡)  − ( 𝛿 +  𝜌)𝑉(𝑡) 

that is 

𝑑𝑉(𝑡)

𝑑𝑡
+ (𝛿 + 𝜌)𝑉(𝑡)

≥  − 𝛼𝐿4𝑒
(−( 𝜂+ µ+ 𝛿𝑇+µ𝑇)𝑡)  

Such that 
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𝑉(𝑡)

≥
𝛼𝐿1

( 𝜂 +  µ + 𝛿𝑇 + µ𝑇) − (𝛿 + 𝜌)
𝑒(−( 𝜂+ µ+ 𝛿𝑇+µ𝑇)𝑡)                                                (10) 

From equation (8) – (10), each of the 

differential equations preserves non-

negativity given non-negative initial 

conditions, which means that if 

𝑆(0), 𝐼(0), 𝑇 (0), 𝑉 (0), 𝑅(0), 𝐴(0)  ≥  0, 
then 𝑆(𝑡), 𝐼(𝑡), 𝑇 (𝑡), 𝑉 (𝑡), 𝑅(𝑡), 𝐴(𝑡)  ≥  0 

for all 𝑡 ≥  0. 

 

3.2 Boundedness of Solutions 

To ensure biological relevance, we also need 

to establish that the solutions are bounded, 

meaning that each population does not grow 

without bound but instead remains within a 

reasonable range over time. This is to allows 

the investigation of the long-term effects of 

ART on HIV transmission without concerns 

over unrealistic population behaviors in the 

model.  

Total Population Bound: Let 𝑁(𝑡)  =
 𝑆(𝑡)  +  𝐼(𝑡)  +  𝑇 (𝑡)  +  𝑉 (𝑡)  +  𝑅(𝑡)  +
 𝐴(𝑡), the total population at time 𝑡. Summing 

all differential equations gives: 
𝑑𝑁(𝑡)

𝑑𝑡
= Λ − µ𝑁(𝑡) − µ𝐼𝐼(𝑡) − µ𝑇  𝑇 (𝑡)
− µ𝐴𝐴(𝑡).                                    (11) 

Since µ, µ𝐼 , µ𝑇 , and µ𝐴 represent natural 

death rates, they help limit the growth of 

𝑁(𝑡), suggesting that 𝑁(𝑡) approaches a 

steady state as t → ∞. 

Now, from equations (8) and (9),  

𝑑𝑁(𝑡)

𝑑𝑡
≤ Λ − (µ

+ µ𝐼)𝐿 exp(−(𝛾 + µ + µ𝐼  
+  𝛿𝐼 +  𝜈 +  𝜆)𝑡)

− µ𝑇𝐿1𝑒
−( 𝜂+ µ+ 𝛿𝑇+µ𝑇)𝑡

− µ𝐴𝐿3𝑒
−(𝜉 + µ𝐴 + µ)𝑡 

𝑁(𝑡) ≤ Λt +
(µ + µ𝐼)𝐿

𝛾 + µ + µ𝐼  +  𝛿𝐼 +  𝜈 +  𝜆
     

 

 

 𝑥 exp(−(𝛾 + µ + µ𝐼  +  𝛿𝐼 +  𝜈 +  𝜆)𝑡)

+
µ𝐴𝐿3

𝜉 + µ𝐴  +  µ
𝑒−(𝜉 + µ𝐴 + µ)𝑡

+
µ𝑇𝐿1

 𝜂 +  µ + 𝛿𝑇 + µ𝑇
𝑒−( 𝜂+ µ+ 𝛿𝑇+µ𝑇)𝑡 

                       (12) 

We observe that  

exp(−𝜙(𝑡)) ≤ 1 ∀ 𝑡

≥ 0,                                                           (13) 

 Consequently, 𝑁(𝑡) bounded! 

 

3.3 Existence and Uniqueness of Solution  

The existence and uniqueness of solutions 

can be established using classical results from 

the theory of ODEs, particularly the Picard-

Lindelof theorem. 

Theorem (Existence and Uniqueness of 

Solutions) 

Let 𝑋(𝑡)  =
 [𝑆(𝑡), 𝐼(𝑡), 𝑇(𝑡), 𝑉 (𝑡), 𝑅(𝑡), 𝐴(𝑡)]⊤ be a 

vector-valued function governed by the 

system of first-order differential equations: 
𝑑𝑋

𝑑𝑡
=  𝐹(𝑋(𝑡)),                                                     (14) 

where 𝐹: 𝑅6 → 𝑅6 is defined by 

𝐹(𝑋) =

[
 
 
 
 
 
 
 
 𝛬 +  𝜎𝑇 −

𝛽𝑆

𝑁
(1 −

𝑃

𝐾
)  𝐼 −  𝜔𝑆𝐼 −  µ𝑆

𝛽𝑆

𝑁
(1 −

𝑃

𝐾
) −  𝛾𝐼 − (µ +  µ𝐼 +  𝛿𝐼 +  𝜈 +  𝜆)𝐼

𝛾𝐼 +  𝜉𝐴 + (𝛼 −  𝜂 −  µ −  𝛿𝑇 −  µ𝑇 )𝑇 +  𝜌𝑉
𝜔𝑆𝐼 +  𝜈𝐼 −  𝛼𝑇 − (𝛿 +  𝜌)𝑉

𝜂𝑇 − (𝜙 +  𝜌 +  µ)𝑅
𝜆𝐼 + (𝜌 +  𝜙)𝑅 − (𝜉 +  µ𝐴 +  µ)𝐴 ]

 
 
 
 
 
 
 
 

.                                (15) 
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If the initial conditions 𝑋(0)  =  𝑋0 =
 [𝑆(0), 𝐼(0), 𝑇(0), 𝑉 (0), 𝑅(0), 𝐴(0)]⊤ are 

given, then there exists a unique solution 

𝑋(𝑡) to this system for 𝑡 ≥  0, provided that 

𝐹(𝑋) is continuous and satisfies a Lipschitz 

condition on the domain of interest. 

Proof: Let 𝑋(𝑡)  =
 [𝑆(𝑡), 𝐼(𝑡), 𝑇(𝑡), 𝑉 (𝑡), 𝑅(𝑡), 𝐴(𝑡)]⊤ as the 

vector of population compartments, and 

express the system as 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋),                                                                      (16) 

where 𝐹(𝑋) represents the right-hand side of 

the system. 

Each component function of 𝐹(𝑋) 

involves operations such as addition, 

subtraction, multiplication, and division by 

constants or by the population compartments 

𝑆, 𝐼, 𝑇, 𝑉 , 𝑅, and 𝐴, which are assumed to be 

non-negative and finite for all t ≥ 0.  

Hence, each component of F(X) is 

continuous on the domain where 𝑋(𝑡) is non-

negative and bounded. By the continuity of 

𝐹(𝑋) on this domain, it satisfies the first 

condition of the Picard-Lindelof theorem for 

existence of solutions. 

Now, to ensure the uniqueness of 

solutions, we must verify that 𝐹(𝑋) satisfies 

the Lipschitz condition: there exists a 

constant 𝐿 >  0 such that, for any two points 

𝑋1, 𝑋2  ∈  𝑅6, 

∥ 𝐹(𝑋1)  −  𝐹(𝑋2) ∥ ≤  𝐿 ∥ 𝑋1  −  𝑋2

∥ .                                                          (17) 

Since each component of 𝐹(𝑋) is either linear 

or bilinear in terms of 𝑆, 𝐼, 𝑇, 𝑉 , 𝑅, and 𝐴, the 

function differences |𝐹𝑖(𝑋1)  −  𝐹𝑖(𝑋2)| are 

bounded by |𝑋𝑗,1  −  𝑋𝑗,2| for each variable 𝑋𝑗 

in 𝑋, up to a constant. Therefore, the system 

satisfies the Lipschitz condition with respect 

to 𝑋 in this domain with a Lipschitz constant 

𝐿. 

Since 𝐹(𝑋) is both continuous and satisfies 

the Lipschitz condition on the domain of 

interest, we can apply the Picard-Lindelof 

Existence and Uniqueness Theorem, which 

guarantees that there exists a unique solution 

𝑋(𝑡)  =  [𝑆(𝑡), 𝐼(𝑡), 𝑇(𝑡), 𝑉 (𝑡), 𝑅(𝑡), 𝐴(𝑡)]⊤ 

to the initial value problem 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋(𝑡)), 𝑋(0)  

=  𝑋0,                                                          (18) 

for t ≥ 0. 

The continuity of 𝐹(𝑋) and the 

Lipschitz condition on the system ensure that 

there exists a unique solution 𝑋(𝑡) to the 

differential equations, starting from the initial 

condition 𝑋(0) = 𝑋0. Thus, the existence and 

uniqueness of solutions for the system is 

established.  

 

3.4 Equilibrium Points: To find the 

equilibrium points of the system modeling 

the effects of Antiretroviral Therapy (ART) 

on HIV transmission, we set the time 

derivatives of each of equations (1) – (6) to 

zero. This gives us the following system of 

algebraic equations: 

Λ + 𝜎𝑇(𝑡) −
𝛽𝑆(𝑡)

𝑁
(1 −

𝑃

𝐾
) 𝐼(𝑡)  − 𝜔𝑆(𝑡) 𝐼(𝑡) −  µ𝑆(𝑡)          = 0               (19) 

𝛽𝑆(𝑡)

𝑁
(1 −

𝑃

𝐾
) 𝐼(𝑡)   −  𝛾𝐼(𝑡)  −  (µ + µ𝐼  +  𝛿𝐼 +  𝜈 +  𝜆)𝐼(𝑡) = 0               (20) 

 𝛾𝐼(𝑡)  +  𝜉𝐴(𝑡) + (𝛼 −  𝜂 −  µ − 𝛿𝑇  −  µ𝑇) 𝑇(𝑡)  +  𝜌𝑉(𝑡)    = 0               (21) 
 𝜔𝑆(𝑡)𝐼(𝑡) + 𝜈𝐼(𝑡) −  𝛼𝑇(𝑡)  − ( 𝛿 +  𝜌)𝑉(𝑡)                                = 0               (22) 

𝜂𝑇(𝑡)  − (𝜙 +  𝜌 +  µ)𝑅(𝑡)                                                             = 0               (23) 
𝜆𝐼(𝑡)  + ( 𝜌 +  𝜙)𝑅(𝑡)  − (𝜉 +  µ𝐴  +  µ)𝐴(𝑡)                      = 0               (24) 

Assuming,  𝐼(𝑡)  ≠  0, from (20) 

(
𝛽𝑆(𝑡)

𝑁
(1 −

𝑃

𝐾
)  −  𝛾 −  (µ + µ𝐼  +  𝛿𝐼 +  𝜈 +  𝜆)) 𝐼(𝑡)                    (25) 
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Equation (25) imply 

(
𝑆(𝑡) =

(𝛾 + µ + µ𝐼  +  𝛿𝐼 +  𝜈 +  𝜆)

𝛽
𝑁 (1 −

𝑃
𝐾)

   or

𝐼(𝑡) = 0                                                          

)                                      (26) 

3.4.1 Disease Free Equilibrium (DFEP) 

When 𝐼(𝑡) = 0, we have Disease Free Equilibrium. solving the system of equations (19) – (23), 

gives 

𝑆(𝑡) =
Λ

µ
, 𝐼(𝑡) = 0, 𝑇(𝑡) = 0, 𝑉 (𝑡) = 0, 𝑅(𝑡) = 0, 𝐴(𝑡) = 0 

3.4.1 Endemic Equilibrium Point (EEP) 

Assuming 𝐼(𝑡) ≠ 0, solving equations (19) – (23) gives: 

𝑆(𝑡) =
𝛾 + 𝑒1

𝑀
,                                                                                                

𝐼(𝑡) =

(
𝜉𝜂𝜌2 + (

−𝑒2𝑒3𝑒4 

+ 𝜉𝜂( 𝜙 +   𝛿)) 𝜌 

+  𝛿( 𝜙𝜉𝜂 − 𝑒3𝑒4(𝑒2  −  𝛼))
) (𝑀𝛬 −  µ(𝛾 + 𝑒1))

(

 
 
 
 
 
 
 
 

𝜉𝜂(𝛾 + 𝑒1)(𝑀 +  𝜔)𝜌2

+ 

(

 
 (𝑀𝜎𝜆𝜉 + 𝑒4 (

(
(𝜎 − 𝑒2)𝛾 

+ 𝜎𝜈 − 𝑒2𝑒1
)𝑀 

+ 𝜔(𝛾 + 𝑒1)(𝜎 − 𝑒2)
))𝑒3 

+ 𝜉𝜂(𝛾 + 𝑒1)( 𝜙 +   𝛿)(𝑀 +  𝜔) )

 
 

𝜌 

+  𝛿

(

 
 (𝑀𝜎𝜆𝜉 + (

(
(𝜎 − 𝑒2  +  𝛼)𝛾 

− 𝑒1(𝑒2  −  𝛼)
)𝑀 

− 𝜔(𝑒2  −  𝛼)(𝛾 + 𝑒1)
) 𝑒4)𝑒3 

+  𝜙𝜉𝜂(𝛾 + 𝑒1)(𝑀 +  𝜔)
)

 
 

)

 
 
 
 
 
 
 
 

, 

 

 𝑇(𝑡) =  

𝑒3 (
(
((𝜈 +  𝛾)𝑒4  +  𝜆𝜉)𝜌 

+  𝛿(𝛾𝑒4  +  𝜆𝜉)
)𝑀 

+ 𝜔𝑒4𝜌(𝛾 + 𝑒1)

) (µ(𝛾 + 𝑒1) − 𝑀𝛬)

(

 
 
 
 
 
 
 
 

𝑀

(

 
 
 
 
 
 
 

(

 
 
 
 𝜉𝜂(𝛾 + 𝑒1)𝜌2 + (

𝑒3 (
(𝜎 − 𝑒2)𝛾 

+ 𝜎𝜈 − 𝑒2𝑒1
) 𝑒4 

+ (
𝜂( 𝜙 +   𝛿)𝛾 +  𝜎𝜆𝑒3 

+  𝜙𝜂𝑒1  +  𝑒1𝜂 𝛿
) 𝜉

)𝜌 

+  𝛿 (
𝑒3((𝜎 − 𝑒2  +  𝛼)𝛾 − 𝑒1(𝑒2  −  𝛼))𝑒4 

+ 𝜉(𝜂𝛾 𝜙 +  𝜂 𝜙𝑒1  +  𝜆𝜎𝑒3)
)

)

 
 
 
 

𝑀 

+ 𝜔(𝛾 + 𝑒1) (
𝜉𝜂𝜌2 + (

𝑒3(𝜎 − 𝑒2)𝑒4 

+ 𝜉𝜂( 𝜙 +   𝛿)
) 𝜌 

+  𝛿( 𝜙𝜉𝜂 − 𝑒3𝑒4(𝑒2  −  𝛼))

)

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

,   
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𝑉(𝑡) =

(
(
(𝜆𝜉𝛼 − (−𝛼𝛾 +  𝜈(𝑒2  −  𝛼))𝑒4)𝑀 

− 𝜔𝑒4(𝑒2  −  𝛼)(𝛾 + 𝑒1)
) 𝑒3 

+ (𝑀𝜈 +  𝜔(𝛾 + 𝑒1))𝜂𝜉( 𝜙 +  𝜌)

) (𝑀𝛬 −  µ(𝛾 +  𝑒1))

(

 
 
 
 

𝑀

(

 
 
 

(

 
 (𝜎𝜆( 𝛿 +  𝜌)𝜉 + 𝑒4 (

((𝜎 − 𝑒2)𝛾 +  𝜎𝜈 − 𝑒2𝑒1)𝜌 

+  𝛿 (
(𝜎 − 𝑒2  +  𝛼)𝛾 

− 𝑒1(𝑒2  −  𝛼)
)

))𝑀 

+ ((𝜎 − 𝑒2)𝜌 −   𝛿(𝑒2  −  𝛼))𝜔𝑒4(𝛾 + 𝑒1) )

 
 

𝑒3 

+ 𝜉𝜂( 𝛿 +  𝜌)(𝛾 + 𝑒1)( 𝜙 +  𝜌)(𝑀 +  𝜔) )

 
 
 

)

 
 
 
 

 

 

𝑅(𝑡) =

𝜂 (
(
((𝜈 +  𝛾)𝑒4  +  𝜆𝜉)𝜌 

+  𝛿(𝛾𝑒4  +  𝜆𝜉)
)𝑀 

+ 𝜔𝑒4𝜌(𝛾 + 𝑒1)

) ( µ(𝛾 + 𝑒1) − 𝑀𝛬)

(

 
 
 
 
 
 
 

𝑀

(

 
 
 
 
 
 
 

(

 
 
 𝜉𝜂(𝛾 + 𝑒1)𝜌2 + (

𝑒3((𝜎 − 𝑒2)𝛾 + 𝜎𝜈 − 𝑒2𝑒1)𝑒4 

+ (
𝜂( 𝜙 +   𝛿)𝛾 +  𝜎𝜆𝑒3 

+  𝜙𝜂𝑒1  +  𝑒1𝜂 𝛿
) 𝜉

)𝜌 

+  𝛿 (
𝑒3((𝜎 − 𝑒2  +  𝛼)𝛾 − 𝑒1(𝑒2  −  𝛼))𝑒4 

+ 𝜉(𝜂𝛾 𝜙 +  𝜂 𝜙𝑒1  +  𝜆𝜎𝑒3)
)

)

 
 
 

𝑀 

+ 𝜔(𝛾 + 𝑒1)(
𝜉𝜂𝜌2 + (

𝑒3(𝜎 − 𝑒2)𝑒4

 + 𝜉𝜂( 𝜙 +   𝛿)
) 𝜌 

+  𝛿( 𝜙𝜉𝜂 − 𝑒3𝑒4(𝑒2  −  𝛼))

)

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 

 

 𝐴(𝑡)  =  
(

 
 
 

(

 
 

𝜂(𝜈 +  𝛾)𝜌2

+ (
(( 𝜙 +   𝛿)𝛾 +   𝜙𝜈)𝜂 

+ 𝜆𝑒2𝑒3

)𝜌 

+ (𝜂𝛾 𝜙 +  𝜆𝑒3(𝑒2  −  𝛼))𝛿 )

 
 

𝑀 

+ 𝜔𝜂𝜌(𝛾 + 𝑒1)( 𝜙 +  𝜌) )

 
 
 

(µ(𝛾 + 𝑒1) − 𝑀𝛬)

(

 
 
 
 
 
 
 
 

𝑀

(

 
 
 
 
 
 
 
 

(

 
 
 
 𝜉𝜂(𝛾 + 𝑒1)𝜌2 + (

𝜉(𝛾 + 𝑒1)( 𝜙 +   𝛿)𝜂 

+𝑒3 (
𝑒4(𝜎 − 𝑒2)𝛾 − 𝑒2𝑒4𝑒1 

+ 𝜎(𝜆𝜉 +  𝜈𝑒4)
)
)𝜌 

+  𝛿 (

 𝜙𝜉(𝛾 + 𝑒1)𝜂 

+ 𝑒3 (
𝑒4(𝜎 − 𝑒2  +  𝛼)𝛾

− 𝑒4(𝑒2  −  𝛼)𝑒1  +  𝜎𝜆𝜉
)
)

)

 
 
 
 

𝑀 

+ 𝜔(𝛾 + 𝑒1)(
𝜉𝜂𝜌2 + (

𝑒3(𝜎 − 𝑒2)𝑒4 

+ 𝜉𝜂( 𝜙 +   𝛿)
) 𝜌 

+  𝛿( 𝜙𝜉𝜂 − 𝑒3𝑒4(𝑒2  −  𝛼))

)

)

 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

 

3.5 Reproduction Number: 

In order to find the Basic Reproduction 

Number, we split the model equations into: 

• New Infection Terms (𝐹): These 

terms account for new infections that 

arise in the infected compartments.  
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• Transition Terms (𝒱): These terms 

represent the flow out of infected 

compartments, not due to new 

infections but due to recovery, death, 

or other transitions. 

In this model, the infected compartments are 

primarily the 𝐼 compartment.  

From the system, these terms are: 

𝐹 =
𝛽𝑆

𝑁
(𝟏 −

𝑃

𝐾
)  𝐼 +  𝜔𝑆𝐼. 

𝒱 =  𝛾𝐼 + (µ +  µ𝐼 +  𝛿𝐼 +  𝜈 +  𝜆)𝐼. 
The next-generation matrix K is constructed 

using the partial derivatives of 𝐹 and 𝒱 with 

respect to 𝐼, evaluated at the DFEP. 

Specifically: 

• Partial Derivative of 𝐹 with respect to 

I at DFEP: 

𝜕𝐹

𝜕𝐼
 |

𝐷𝐹𝐸𝑃
=

𝛽
𝛬
µ

𝑁
(1 −

𝑃

𝐾
) +  𝜔

𝛬

µ
 . 

• Partial Derivative of 𝒱 with respect to 

𝐼 at DFEP: 
𝜕𝒱

𝜕𝐼
 |

𝐷𝐹𝐸𝑃
 =  𝛾 +  µ +  µ𝐼 +  𝛿𝐼 +  𝜈 +  𝜆. 

Thus, the next-generation matrix K for this 

model is: 

𝐾 =  
𝜕𝐹

𝜕𝐼
 |

𝐷𝐹𝐸𝑃
 × (

𝜕𝒱

𝜕𝐼
 |

𝐷𝐹𝐸𝑃
)

−1

. 

Substitute the values: 

𝐾 =

𝛽
𝛬
µ

𝑁 (1 −
𝑃
𝐾) +  𝜔

𝛬
µ

𝛾 +  µ + µ𝐼  +  𝛿𝐼  +  𝜈 +  𝜆
. 

The Basic Reproduction Number 𝑅0 is the 

spectral radius (dominant eigenvalue) of the 

next generation matrix 𝐾. Since 𝐾 is a scalar 

here, 𝑅0 is simply the value of 𝐾: 

𝛽
𝛬
µ

𝑁 (1 −
𝑃
𝐾) +  𝜔

𝛬
µ

𝛾 +  µ + µ𝐼  + 𝛿𝐼  +  𝜈 +  𝜆
. 

Effective Reproduction Number, 𝑅𝑒 

The Effective Reproduction Number 𝑅𝑒 

takes into account the current state of the 

population, especially the proportion of 

susceptible individuals. Therefore, 𝑅𝑒 

depends on both R0 and the current 

susceptible population S. 

𝑅𝑒 =  𝑅0  ·
𝑆

𝑁
. 

Substituting S from the endemic equilibrium 

point: 

𝑅𝑒 =  
(
𝛽
𝑁 (1 −

𝑃
𝐾) +  𝜔)

𝛬
µ

𝛽 (1 −
𝑃
𝐾)

 

3.6 Stability Analysis 

The model can be analyzed for stability and 

equilibrium points to understand the long-

term behavior of the epidemic. To analyze the 

stability of the system describing the effects 

of Antiretroviral Therapy (ART) on the 

transmission dynamics of HIV, we typically 

perform stability analysis on two key 

equilibrium points: 

The Jacobian matrix J at the equilibrium 

point is defined as follows: 

 

 

 

𝐽 =                         (27) 

1. Disease-Free Equilibrium Point (DFEP): The DFEP is given by: 
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(𝑺, 𝑰, 𝑻, 𝑽, 𝑹, 𝑨)  = (
𝛬

µ
 , 0, 0, 0, 0, 0). 

Simplified Jacobian at DFEP: Now simplifying, we find: 

𝑱𝐷𝐹𝐸𝑃  =                                             (28) 

where 𝑒1 = µ + µ𝐼 + 𝜹𝐼 + 𝝂 + 𝝀𝟏, 𝑒2 = 𝜂 + µ + 𝛿𝑇 + µ𝑇 , 𝑒3 = 𝜙 + 𝜌 + µ, 𝑒4 = 𝜉 + µ𝐴 + µ 

Since the matrix is block diagonal, we can analyze the blocks separately. 

The characteristics polynomial is given by 

64𝛺6 + (32𝜇 − 32𝑎2 − 32𝑎3 − 32𝑎5 + 32𝑒3 + 32𝑒4)𝛺
5 + (16𝛼𝜌 − 16𝜇𝑎2 − 16𝜇𝑎3

− 16𝜇𝑎5 

+16𝜇𝑒3 + 16𝜇𝑒4 + 16𝑎2𝑎3 + 16𝑎2𝑎5 − 16𝑎2𝑒3 − 16𝑎2𝑒4 + 16𝑎3𝑎5 − 16𝑎3𝑒3 − 16𝑎3𝑒4 

− 16𝑎5𝑒3 − 16𝑎5𝑒4 + 16𝑒3𝑒4)𝛺
4 + (8𝛼𝜌𝜇 − 8𝛼𝜌𝑎2 + 8𝛼𝜌𝑒3 + 8𝛼𝜌𝑒4 − 8𝜂𝜉𝑎6 + 8𝜇𝑎2𝑎3 

+ 8𝜇𝑎2𝑎5 − 8𝜇𝑎2𝑒3 − 8𝜇𝑎2𝑒4 + 8𝜇𝑎3𝑎5 − 8𝜇𝑎3𝑒3 − 8𝜇𝑎3𝑒4 − 8𝜇𝑎5𝑒3 − 8𝜇𝑎5𝑒4 + 8𝜇𝑒3𝑒4 

− 8𝑎2𝑎3𝑎5 + 8𝑎2𝑎3𝑒3 + 8𝑎2𝑎3𝑒4 + 8𝑎2𝑎5𝑒3 + 8𝑎2𝑎5𝑒4 − 8𝑎2𝑒3𝑒4 + 8𝑎3𝑎5𝑒3 + 8𝑎3𝑎5𝑒4 

− 8𝑎3𝑒3𝑒4 − 8𝑎5𝑒3𝑒4)𝛺
3 + (−4𝛼𝜌𝜇𝑎2 + 4𝛼𝜌𝜇𝑒3 + 4𝛼𝜌𝜇𝑒4 − 4𝛼𝜌𝑎2𝑒3 − 4𝛼𝜌𝑎2𝑒4 

+4𝛼𝜌𝑒3𝑒4 − 4𝜂𝜉𝜇𝑎6 + 4𝜂𝜉𝑎2𝑎6 + 4𝜂𝜉𝑎5𝑎6 − 4𝜇𝑎2𝑎3𝑎5 + 4𝜇𝑎2𝑎3𝑒3 + 4𝜇𝑎2𝑎3𝑒4 

+ 4𝜇𝑎2𝑎5𝑒3 + 4𝜇𝑎2𝑎5𝑒4 − 4𝜇𝑎2𝑒3𝑒4 + 4𝜇𝑎3𝑎5𝑒3 + 4𝜇𝑎3𝑎5𝑒4 − 4𝜇𝑎3𝑒3𝑒4 − 4𝜇𝑎5𝑒3𝑒4 

− 4𝑎2𝑎3𝑎5𝑒3 − 4𝑎2𝑎3𝑎5𝑒4 + 4𝑎2𝑎3𝑒3𝑒4 + 4𝑎2𝑎5𝑒3𝑒4 + 4𝑎3𝑎5𝑒3𝑒4)𝛺
2 + (−2𝛼𝜌𝜇𝑎2𝑒3 

− 2𝛼𝜌𝜇𝑎2𝑒4 + 2𝛼𝜌𝜇𝑒3𝑒4 − 2𝛼𝜌𝑎2𝑒3𝑒4 + 2𝜂𝜉𝜇𝑎2𝑎6 + 2𝜂𝜉𝜇𝑎5𝑎6 − 2𝜂𝜉𝑎2𝑎5𝑎6 

− 2𝜇𝑎2𝑎3𝑎5𝑒3 − 2𝜇𝑎2𝑎3𝑎5𝑒4 + 2𝜇𝑎2𝑎3𝑒3𝑒4 + 2𝜇𝑎2𝑎5𝑒3𝑒4 + 2𝜇𝑎3𝑎5𝑒3𝑒4 − 2𝑎2𝑎3𝑎5𝑒3𝑒4)𝛺 

−𝛼𝜌𝜇𝑎2𝑒3𝑒4 − 𝜂𝜉𝜇𝑎2𝑎5𝑎6 − 𝜇𝑎2𝑎3𝑎5𝑒3𝑒4. 
 

The above characteristic polynomial equation is of the form 

𝑃(𝛺) = 𝑐6𝛺
6 + 𝑐5𝛺

5 + 𝑐4𝛺
4 + 𝑐3𝛺

3 + 𝑐2𝛺
2 + 𝑐1𝛺 + 𝑐0 = 0 

𝑐6 = 64, 
𝑐5 = 32𝜇 − 32𝑎2 − 32𝑎3 − 32𝑎5 + 32𝑒3 + 32𝑒4, 
𝑐4 = 16𝛼𝜌 − 16𝜇𝑎2 − 16𝜇𝑎3 − 16𝜇𝑎5 + 16𝜇𝑒3 + 16𝜇𝑒4 + 16𝑎2𝑎3 + 16𝑎2𝑎5 − 16𝑎2𝑒3

− 16𝑎2𝑒4 + 16𝑎3𝑎5 − 16𝑎3𝑒3 − 16𝑎3𝑒4 − 16𝑎5𝑒3 − 16𝑎5𝑒4 + 16𝑒3𝑒4, 
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𝑐3 = 8𝛼𝜌𝜇 − 8𝛼𝜌𝑎2 + 8𝛼𝜌𝑒3 + 8𝛼𝜌𝑒4 − 8𝜂𝜉𝑎6 + 8𝜇𝑎2𝑎3 + 8𝜇𝑎2𝑎5 − 8𝜇𝑎2𝑒3 − 8𝜇𝑎2𝑒4

+ 8𝜇𝑎3𝑎5 − 8𝜇𝑎3𝑒3 − 8𝜇𝑎3𝑒4 − 8𝜇𝑎5𝑒3 − 8𝜇𝑎5𝑒4 + 8𝜇𝑒3𝑒4 − 8𝑎2𝑎3𝑎5

+ 8𝑎2𝑎3𝑒3 + 8𝑎2𝑎3𝑒4 + 8𝑎2𝑎5𝑒3 + 8𝑎2𝑎5𝑒4 − 8𝑎2𝑒3𝑒4 + 8𝑎3𝑎5𝑒3 + 8𝑎3𝑎5𝑒4

− 8𝑎3𝑒3𝑒4 − 8𝑎5𝑒3𝑒4, 

𝑐2 = −4𝛼𝜌𝜇𝑎2 + 4𝛼𝜌𝜇𝑒3 + 4𝛼𝜌𝜇𝑒4 − 4𝛼𝜌𝑎2𝑒3 − 4𝛼𝜌𝑎2𝑒4 + 4𝛼𝜌𝑒3𝑒4 − 4𝜂𝜉𝜇𝑎6 + 4𝜂𝜉𝑎2𝑎6

+ 4𝜂𝜉𝑎5𝑎6 − 4𝜇𝑎2𝑎3𝑎5 + 4𝜇𝑎2𝑎3𝑒3 + 4𝜇𝑎2𝑎3𝑒4 + 4𝜇𝑎2𝑎5𝑒3 + 4𝜇𝑎2𝑎5𝑒4

− 4𝜇𝑎2𝑒3𝑒4 + 4𝜇𝑎3𝑎5𝑒3 + 4𝜇𝑎3𝑎5𝑒4 − 4𝜇𝑎3𝑒3𝑒4 − 4𝜇𝑎5𝑒3𝑒4 − 4𝑎2𝑎3𝑎5𝑒3

− 4𝑎2𝑎3𝑎5𝑒4 + 4𝑎2𝑎3𝑒3𝑒4 + 4𝑎2𝑎5𝑒3𝑒4 + 4𝑎3𝑎5𝑒3𝑒4, 

𝑐1 = −2𝛼𝜌𝜇𝑎2𝑒3 − 2𝛼𝜌𝜇𝑎2𝑒4 + 2𝛼𝜌𝜇𝑒3𝑒4 − 2𝛼𝜌𝑎2𝑒3𝑒4 + 2𝜂𝜉𝜇𝑎2𝑎6 + 2𝜂𝜉𝜇𝑎5𝑎6

− 2𝜂𝜉𝑎2𝑎5𝑎6 − 2𝜇𝑎2𝑎3𝑎5𝑒3 − 2𝜇𝑎2𝑎3𝑎5𝑒4 + 2𝜇𝑎2𝑎3𝑒3𝑒4 + 2𝜇𝑎2𝑎5𝑒3𝑒4

+ 2𝜇𝑎3𝑎5𝑒3𝑒4 − 2𝑎2𝑎3𝑎5𝑒3𝑒4 

𝑐0 = −𝛼𝜌𝜇𝑎2𝑒3𝑒4 − 𝜂𝜉𝜇𝑎2𝑎5𝑎6 − 𝜇𝑎2𝑎3𝑎5𝑒3𝑒4. 

By Routh-Hurwitz criterion governing the polynomials of order 6 the system is stable if all 

and only if all roots of the equation have negative real parts. And for the system to be stable, all 

entries in the first column of the Routh array must be positive. 

1. 𝑐6 > 0 

2. 𝑐5 > 0 

3. 𝑏31 > 0  

4. 𝑏41 > 0 

5. 𝑏51 > 𝑐3 

where 𝑏31 =
𝑐4𝑐5−32𝑐3

𝑐6
, 𝑏41 =

𝑏31𝑐5−𝑐6𝑏32

𝑏31
, 𝑏51 =

𝑏41 𝑏32− 𝑏31𝑏42

𝑏41
, 𝑏32 =

𝑐4𝑐6−32𝑐2

𝑐4
, 𝑏42 =

𝑏31𝑐6

𝑏31
 

From the expansion above, all the conditions are satisfied. Therefore, the disease-free equilibrium 

is locally asymptotically stable. This completes the proof. 

 

Sensitivity Analysis 

The sensitivity 𝑆𝑥 of 𝑅𝟎 with respect to a parameter x can be defined as: 

𝑆𝑥 =
𝜕𝑅𝟎

𝜕𝑥
·

𝑥

𝑅𝟎
 

The model parameters: 𝛬, µ, 𝛽, 𝑁, 𝑃, 𝐾, 𝜔, 𝛾, µ𝐼 , 𝛿𝐼 , 𝜈, and 𝜆 are obtained as follows: 

𝑆𝜦 =
1

µ
(
𝛽

𝑁
(1 −

𝑃

𝐾
) + 𝜔) ·

𝛬

𝑅𝟎(𝛾 +  µ +  µ𝑖 +  𝛿𝑖 +  𝜈 +  𝜆)
 

𝑆µ = −
𝛬 (

𝛽
𝑁 (1 −

𝑃
𝐾) + 𝜔)

µ𝟐(𝛾 +  µ +  µ𝑖 +  𝛿𝑖 +  𝜈 +  𝜆)
·  

µ

𝑅𝟎
  

𝑆𝛽 =
𝛬

µ
·
1

𝑁
(1 −

𝑃

𝐾
) ·

1

𝑅𝟎(𝛾 +  µ +  µ𝑖 +  𝛿𝑖 +  𝜈 +  𝜆)
 ·  𝛽 
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𝑆𝑁 = −
𝛬

µ

𝛽

𝑁2
(1 −

𝑃

𝐾
) ·

𝑁

𝑅𝟎(𝛾 + µ + µ𝑖 + 𝛿𝑖 + 𝜈 + 𝜆)
 

𝑆𝑃  =  
𝛬

µ

𝛽

𝑁𝐾
·

𝑃

𝑅𝟎(𝛾 + µ + µ𝑖 + 𝛿𝑖 + 𝜈 + 𝜆)
 

𝑆𝐾  =  −
𝛬

µ

𝛽

𝑁𝐾2
·

𝐾

𝑅𝟎(𝛾 + µ + µ𝑖 + 𝛿𝑖 + 𝜈 + 𝜆)
 

𝑆𝜔 =

𝛬
µ 𝜔

𝑅𝟎(𝛾 + µ + µ𝑖 + 𝛿𝑖 + 𝜈 + 𝜆)
, 𝑆𝛾 =

−
𝛬
µ

(
𝛽
𝑁 (1 −

𝑃
𝐾) + 𝜔)𝛾

𝑅0(𝛾 + µ + µ𝑖 + 𝛿𝑖 + 𝜈 + 𝜆)2
 

𝑆µ𝑖
=

−
𝛬
µ

(
𝛽
𝑁 (1 −

𝑃
𝐾) + 𝜔)µ𝑖

𝑅0(𝛾 +  µ +  µ𝑖 +  𝛿𝑖 +  𝜈 +  𝜆)2
, 𝑆𝛿𝑖

=
−

𝛬
µ

(
𝛽
𝑁 (1 −

𝑃
𝐾) + 𝜔)𝛿𝑖

𝑅0(𝛾 + µ + µ𝑖 + 𝛿𝑖 + 𝜈 + 𝜆)2
 

𝑆𝜈 =
−

𝛬
µ

(
𝛽
𝑁 (1 −

𝑃
𝐾) + 𝜔) 𝜈

𝑅0(𝛾 + µ + µ𝑖 + 𝛿𝑖 + 𝜈 + 𝜆)2
, 𝑆𝜆 =

−
𝛬
µ

(
𝛽
𝑁 (1 −

𝑃
𝐾) + 𝜔)𝜆

𝑅0(𝛾 + µ + µ𝑖 + 𝛿𝑖 + 𝜈 + 𝜆)2
 

 

Table 2: Sensitivity indices with the base values in Table 1 (𝑅𝟎 = 0.21) 

Parameter Index  Parameter Index 

𝑆𝜦 1.0000000000  𝑆𝛿𝑖
 -0.0172413793 

𝑆𝜔 0.9999999174  𝑆𝜆 -0.0344827586 

𝑆𝛽 0.0000000825  𝑆µ𝑖
 -0.0483132028 

𝑆𝑃 0.0000000083  𝑆𝛾 -0.3448275862 

𝑆𝑁 -0.0000000001  𝑆𝜈 -0.3448275862 

𝑆𝐾 -0.0000009864  𝑆µ -1.0000000000 

 

4. NUMERICAL SIMULATION 

The numerical solution of this model 

employs Maple to simulate and analyze 

ART's impact through numerical simulations 

and graphical outputs. Maple's advanced 

computational tools enable precise scenario 

simulations and trend visualization, 

enhancing data interpretation. Numerical 

simulations are performed to study the impact 

of various parameters, on the transmission 

dynamics of HIV. 

 

Figures 4.1 and 4.2 demonstrate the effects of 

recruitment rates (Λ) on the dynamics of 

susceptible and vaccinated populations over 

time, measured in weeks. Figure 4.1 shows 

the impact of varying Λ on the number of 

susceptible individuals (S(t)). A higher 

recruitment rate significantly increases the 

susceptible population. For example, when 

Λ=0.9 (dashed black line), the susceptible 

population grows rapidly compared to Λ=0.3 

(red line) or Λ=0 (solid black line). With 

positive Λ, the susceptible population grows 

consistently over time, whereas it declines 

when Λ=0, reflecting the absence of new 

individuals entering the population. This 

suggests that high recruitment rates expand 

the pool of individuals at risk of HIV, 

emphasizing the need for targeted 

interventions, such as vaccination or 

educational programs, to mitigate 

transmission. Figure 4.2 illustrates the 

vaccinated population over time for different 

Λ values. As Λ increases, the initial peak of 
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vaccinated individuals rises but declines 

more rapidly afterward. For Λ=0 (solid black 

line), the vaccinated population achieves the 

highest initial peak around week 1 and 

decreases gradually. Conversely, with Λ=0.9 

(dashed black line), the decline occurs faster, 

likely due to new susceptible individuals 

diluting the vaccinated group. 

 

 
Figure 5.1: Effect of recruitment rate on the 

susceptible class 

 
Figure 4.2:  Effect of recruitment rate on the 

vaccinated class 

 
Figure 4.3: Effect of transmission rate on the 

vaccinated class 

 
Figure 4.4: Effect of transmission rate on 

the infected (HIV) class 
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Figure 4.5: Effect of viral activation on treated 

class 

 
Figure 4.6: Effect of viral activation on 

recovered class 

 
Figure 4.7: Effect of viral activation on 

vaccinated class 

 
Figure 4.8: Effect of progression rate from 

infected to treated class on infected (HIV) 

class 

 
Figure 4.9: Effect of progression rate from 

infected to treated class on treated class 

 
Figure 4.10: Effect of viral decay on the 

infected (HIV) class 
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This underscores the importance of 

sustained vaccination efforts in populations 

with high recruitment rates to maintain 

immunity and control HIV transmission. 

Figures 4.3 and 4.4 illustrate the 

dynamics of vaccinated and infected 

populations under varying HIV transmission 

rates (β) over time (in weeks), revealing 

critical insights into transmission dynamics. 

In Figure 4.3, the vaccinated population 

exhibits differing trends based on β values. At 

high transmission rates, such as β = 0.9 

(dashed black line), the vaccinated 

population peaks early but declines sharply, 

even becoming negative by week 4, 

potentially indicating a model artifact or 

rapid depletion of the vaccinated 

compartment. Lower transmission rates, such 

as β = 0.3 (red line) or β = 0 (solid black line), 

result in more stable vaccinated populations, 

with slower declines over time. The stability 

at β = 0 emphasizes minimal pressure on the 

vaccinated compartment, whereas high 

transmission rates suggest a need for 

supplemental interventions like ART to 

sustain immunity levels. This highlights the 

challenge of relying solely on vaccination in 

high-transmission settings. Figure 4.4 shows 

the infected population’s response to varying 

β values. At β = 0, the infected population 

remains relatively stable with minimal 

decline. However, as β increases (e.g., β = 

0.9), the infected population decreases 

significantly, suggesting faster transitions out 

of the infected compartment. These 

transitions may result from increased 

progression to AIDS, ART initiation, or 

higher mortality rates associated with high 

transmission. This emphasizes β’s dual role 

in driving infections while accelerating 

infected population depletion through disease 

progression and mortality. 

In Figure 4.5, depicting the treated 

class, an increase in the viral activation rate 

(α) from 0 to 0.9 correlates with a gradual rise 

in the treated population, culminating in a 

sharp increase at α = 0.9. This suggests that 

higher α values enhance viral reactivation, 

retaining more individuals in the treated class 

rather than allowing progression to recovery 

or AIDS. The sharp rise at α = 0.9 may 

indicate a threshold effect, where reactivation 

becomes significantly more frequent. 

Similarly, Figure 4.6 shows a comparable 

trend in the recovered class. As α increases, 

more individuals transition into the recovered 

compartment, likely due to immune 

responses triggered by reactivation. At α = 

0.9, a sharp rise occurs, mirroring the treated 

class's behavior. This suggests that while 

moderate α values stimulate immune 

recovery, very high α values cause a 

pronounced influx into recovery.  

In contrast, Figure 4.7 shows that 

increasing α drives the vaccinated population 

into the negative region. This decline likely 

reflects a depletion effect, where reactivation 

diminishes vaccination effectiveness, 

potentially due to reinfection risks. Negative 

values may indicate a theoretical artifact, 

signifying vaccination's inability to 

counteract reactivation-driven infections 

under high α scenarios. The viral activation 

rate α significantly impacts all compartments, 

emphasizing its importance in HIV 

management strategies. As γ increases from 0 

to 0.9, figures 4.8 and 4.9 illustrate 

significant trends in the infected (I(t)) and 

treated (T(t)) classes, reflecting ART's 

impact. In the infected class, a gradual 

reduction occurs as γ rises, indicating that 

more individuals transition from infection to 

treatment. This aligns with γ's role as the 

progression rate to ART, showcasing how 

scaling up ART reduces untreated infections 

and the burden of HIV. Conversely, the 

treated class expands with increasing γ, 

reflecting the broader reach and effectiveness 

of ART in managing HIV and reducing 

transmission through viral load suppression. 

Additionally, figure 4.10 demonstrates the 

effects of δ (viral decay rate). As δ increases, 
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the infected class size declines, consistent 

with faster viral suppression outcomes. A 

higher δ accelerates viral clearance in 

infected individuals, reducing viral loads and 

lowering HIV transmissibility. This results in 

fewer new infections and a gradual reduction 

in the infected population. The combination 

of higher γ and δ highlights the synergistic 

effects of ART uptake and viral suppression 

strategies in reducing HIV spread. These 

trends underscore ART's dual role in 

transitioning individuals to treatment and 

curbing transmission by effectively 

managing viral loads and preventing disease 

progression. 

 

5. SENSITIVITY INDICES AND ITS 

IMPLICATION(S) ON THE 

MODEL 

The sensitivity analysis highlights the impact 

of various parameters on the basic 

reproduction number (R₀) in HIV 

transmission dynamics. The recruitment rate 

(Λ) has a sensitivity index of 1, indicating 

that population influx increases R₀ by adding 

susceptible individuals. Targeted screening, 

HIV awareness, and testing in high-influx 

areas could help manage this effect. 

Conversely, the natural death rate (µ) has a 

sensitivity index of -1, reducing R₀ by 

lowering the susceptible population. While 

not directly controllable, improving general 

healthcare can maintain population health 

without inadvertently increasing 

transmission. 

The HIV-induced immune activation 

rate (ω), with a sensitivity index near 1, 

significantly raises R₀. Early ART initiation 

can stabilize the immune system, delaying 

activation and slowing disease progression. 

Although the HIV transmission rate (β) has a 

low sensitivity index in this model, 

preventive measures like safe sex practices 

and needle exchange programs remain 

critical. Parameters like progression to AIDS 

(P), total population size (N), and AIDS 

population carrying capacity (K) have 

minimal sensitivity indices, suggesting 

limited direct influence on R₀. 

Moderate negative sensitivity indices for 

ART progression rate (γ) and viral rebound 

rate (ν) emphasize the importance of ART 

access, adherence, and minimizing viral 

rebound to reduce R₀. HIV-induced death rate 

(µᵢ), additional mortality due to HIV (δᵢ), and 

progression to AIDS (λ) show modest 

negative indices, reflecting the role of ART 

in delaying disease progression and reducing 

transmission likelihood. These findings 

reinforce ART's central role in controlling 

HIV spread and the value of targeted public 

health interventions. 

 

6. CONCLUSION 

This study underscores Antiretroviral 

Therapy's (ART) crucial role in HIV 

transmission dynamics, highlighting its 

ability to reduce viral loads to undetectable 

levels and minimize transmission risk. 

Sensitivity analysis reveals that parameters 

such as treatment initiation rates and 

adherence significantly affect outcomes. 

Addressing barriers to ART access and 

adherence, especially among vulnerable 

populations, is vital for reducing HIV 

incidence. The findings support achieving 

UNAIDS 90-90-90 targets and emphasize 

integrating ART with behavioral 

interventions. This work provides critical 

insights for policymakers to enhance HIV 

prevention and treatment strategies, ensuring 

equitable and effective care access. 

Key Findings 

• Consistent ART adherence leads to 

undetectable viral loads, effectively 

minimizing transmission risk. 

• The study demonstrates that ART is 

crucial in controlling HIV 



Okedoye et al.(2025)/ FUPRE Journal, 9(1):163-180(2025) 

 

Fupre Journal 9(1), 163 - 180(2025)   179 
 
 

transmission dynamics within 

populations. 

• Findings support the integration of 

ART into public health strategies to 

achieve the UNAIDS 90-90-90 

targets. 

• Sensitivity analysis reveals that ART 

adherence rates and treatment 

initiation rates are critical 

determinants of treatment outcomes. 

• Identifying and addressing barriers to 

ART access especially among 

vulnerable populations is essential for 

optimizing treatment outcomes. 
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