
 

*Corresponding author, e-mail:ako.rita@fupre.edu.ng 

DIO 

©Scientific Information, Documentation and Publishing Office at FUPRE Journal 

 

Research Article / Review Article     FUPRE JOURNAL 9(1):286-304(2025) 

              FUPRE Journal   
  

                     of 

Scientific and Industrial Research 
ISSN: 2579-1184(Print)                                                                                                             ISSN: 2578-1129 (Online) 

http://fupre.edu.ng/journal 

A framework for Machine Learning- based Fall from Height Prediction in 

Construction Industry 
 

OKORO, D. A. 1 ,  AKO, R. E. 1, * ,  ABERE, R. A. 1  
1Department of Computer Science, Federal University of Petroleum Resources, Effurun, Nigeria 

 
ARTICLE INFO 

 

ABSTRACT 

The construction industry is undeniably one of the most hazardous sectors, where 

workers face a multitude of risks daily. Among these risks, falls from height (FFH) 

stand out as a significant concern, accounting for a substantial proportion of fatal 

and nonfatal injuries.  Over the years, with the advent of advanced technologies 

and data analytics, there has been a growing interest in leveraging Machine 

Learning (ML) and artificial intelligence (AI) techniques to enhance fall risk 

assessment and prevention. This paper provides a comprehensive, concept-centric 

literature review of FFH, exploring its evolution, diverse models, the use of 

machine learning and artificial intelligence techniques for better assessment and 

prevention as well as extensive applications. This paper presents a framework for 

an explainable machine learning-based model for proactive FFH prediction of in 

construction sites. The framework leverages the predictive power of random forest 

classifier, a robust ensemble learning method, along with the interpretability 

offered by the Local Interpretable Model-agnostic Explanations (LIME) 

framework. It also critically addresses key challenges such as lack of transparency 

in the use of machine learning models in FFH predictions and its consequent effect 

of limiting trust among users. By evaluating the evolution and current state of FFH 

research, this paper reviewed the significant trends, uncovers existing gaps, and 

suggests potential direction for future work. This research work, therefore aims to 

deepen the understanding of this crucial domain in the construction industry that 

is receiving traction and disturbing publicity. 
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1. INTRODUCTION 

   The construction industry is undeniably one of 

the most hazardous sectors, where workers face a 

multitude of risks daily. Among these risks, falls 

from height (FFH) stand out as a significant 

concern, accounting for a substantial proportion 

of fatal and nonfatal injuries. According to 

(Febriana et al., 2022) FFH are consistently the 

leading cause of fatalities in the construction 

industry, constituting nearly one-third of all 

construction-related deaths. This alarming 

statistic underscores the urgent need for effective 

fall prevention strategies to safeguard the well-

being of construction workers. FFH incidents 

inflict a devastating human cost. Workers risk 

life-altering injuries and potentially permanent 

disabilities, compromising their workability, 

independence, and quality of life. In the worst 

cases, fatalities leave families and communities 

grieving. The psychological impact extends 

beyond the injured, affecting those who witness 

such events. Traditional methods of assessing fall 

risks in the construction industry often rely on 

http://fupre.edu.ng/journal
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manual observations, safety audits, and incident 

reports (Oswald et al., 2018). While these 

methods provide valuable insights, they are often 

subjective, time-consuming, and prone to human 

errors (Shi et al., 2019). With the advent of 

advanced technologies and data analytics, there 

has been a growing interest in leveraging machine 

learning (ML) and artificial intelligence (AI) 

techniques to enhance fall risk assessment and 

prevention (Bates et al., 2021). Several studies 

have explored the application of ML and AI in 

predicting and preventing FFH in the 

construction industry. For instance, (Nadia et al., 

2022) conducted an impact assessment of 

reinforced learning methods on construction 

workers' fall risk behaviors using virtual reality. 

Their study demonstrated the potential of virtual 

reality-based reinforcement learning techniques 

in simulating and analyzing workers' fall risk 

behaviors, thereby providing a more accurate and 

interactive approach to fall risk assessment.  

 

The adoption of machine learning models for 

FFH prediction in construction is hindered by 

their lack of transparency, which limits trust 

among users (Rudin et al., 2019). FFH incidents 

have severe consequences, including injuries, 

fatalities, and psychological trauma, emphasizing 

the need for reliable safety measures. This study 

addresses these challenges by proposing an 

explainable AI (XAI)-based model that integrates 

XAI techniques to create a transparent and 

interpretable fall detection algorithm. The goal is 

to provide construction stakeholders with clear 

insights into the model's decision-making 

process, thereby fostering trust and encouraging 

the wider acceptance of AI-powered FFH 

prevention systems. This is where Explainable 

Artificial Intelligence (XAI) emerges as a 

transformative force. XAI techniques aim to 

demystify the decision-making processes of ML 

models, providing insights into how they arrive at 

specific predictions (Sun et al., 2023). This 

transparency fosters trust and empowers users to 

understand the factors contributing most to the 

model's risk assessments. (Neupane et al., 2022) 

In the context of FFH prevention, XAI can unveil 

the critical features influencing the model's 

identification of high-risk situations. For 

instance, an XAI-enabled model might reveal that 

worker location data, combined with sensor 

readings indicating unsafe work practices, 

significantly contribute to a high FFH risk 

prediction (Jagatheesaperumal et al., 2022). This 

granular understanding allows safety managers to 

tailor interventions, such as targeted safety 

briefings or deploying fall protection equipment 

in specific areas. 

 

The integration of XAI with ML holds immense 

potential for revolutionizing FFH prevention 

strategies in construction. By fostering trust and 

providing actionable insights, XAI can empower 

stakeholders to make data-driven decisions, 

ultimately leading to safer construction sites and 

a reduction in FFH incidents. This study seeks to 

address these gaps by leveraging XAI to develop 

a proactive fall prevention model, contributing to 

the enhancement of safety protocols and the 

reduction of FFH accidents in construction sites 

 

2. RELATED WORKS  

Fall-from-height (FFH) accidents account for an 

extremely high proportion of accidents at 

construction sites with a fairly high mortality rate. 

(Sa et al., 2011) conducted a comparative analysis 

of accidents that occurred between 2011 and 2015 

in three countries: the United States, Korea, and 

China. Accidents were found to occur frequently 

at construction sites, with the U.S. showing a 26% 

increase (from 781 to 985), while China and 

Korea showed a 28% decrease (2634 to 1891) and 

a 21% decrease (from 621 to 493), respectively. 

The average mortality rate was the highest in 

Korea (17.9 persons), followed by the U.S. and 

China (9.4 and 5.3 persons, respectively). The 

Occupational Safety and Health Administration 

(OSHA) requires implementing physical safety 

measures to reduce such accidents at construction 

sites (S. Lee et al., 2022). Primary protection 

measures include implementing guardrails, 

covers, safety nets, and physical safety devices, 

while secondary protection measures include the 

use of a personal fall arrest system (PFAS) 

whereby the impact of an FFH accident can be 

minimized (Peng et al., 2023). A PFAS comprises 

a connector, full-body harness, lanyard, and 

rescue line, and may prevent a person from falling 

when properly configured(Pomares et al., 2020). 

A PFAS cannot prevent FFHs but can effectively 

avoid fatalities from FFHs (Cheng et al., 2022). 

(S. Lee et al., 2022) reported that fatalities due to 

losing balance can be avoided when the PFAS is 

properly used; however, if a worker is suspended 

from a PFAS for a prolonged time, there is a risk 

of suspension trauma, orthostatic intolerance, or 

other serious injuries, and workers still sustain 
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injuries due to the incompleteness of a PFAS (Lee 

et al., 2019). Furthermore, the effect of a PFAS is 

insignificant when a person falls from a height 

below 15 ft, and accidents occur because workers 

do not properly wear PFAS due to their 

inconvenience during work (Rey-merchán et al., 

2021). 

To address the limitations of interrupting the 

movements of workers, some studies have 

considered the use of visual devices (Nadhim et 

al., 2016) analyzed four actions on ladders using 

depth information measured by Kinect and 

classified unsafe actions with 90.9% accuracy. 

(Nadhim et al., 2016) defined unsafe behaviors as 

situations in which workers and structural 

supports overlap in construction. They developed 

an automatic computer-vision system with 90% 

recall and 75% precision using CNN. (Lee et al., 

2019) combined computer vision with long short-

term memory (LSTM) to predict unsafe actions 

from video data. They determined the safety of 

actions based on the predicted trajectories. Their 

model showed a mean intersection-over-union of 

73.4%, mean absolute precision of 92.9% (IOU: 

0.5), and mean absolute precision of 68.1% (IOU: 

0.7). However, the vision-based system is not 

effective since workers might be obscured by 

structures on construction sites. Researchers have 

actively developed fall detection algorithms to 

minimize injuries in the elderly from falls using 

wearable sensors(Jung et al., 2020). Threshold-

based methods have mainly been used for fall 

detection. (Jung et al., 2020) developed a fall 

detection algorithm with an accuracy of 92.4% 

and a lead time of 280.25 ± 10.29 ms, evaluated 

on the SisFall public dataset, and used a 

complementary filter to compute the vertical 

angles from the IMU sensor data. (Ahn et al., 

2018) developed a hip protection system for the 

elderly, which comprises an IMU sensor, a non-

gunpowder type inflator, and a wearable airbag 

with a threshold-based fall detection algorithm, 

and 100% accuracy and a 401.9 ± 46.9 ms lead 

time were obtained. (Koo et al., 2021) developed 

a post-fall detection algorithm based on machine 

learning using an IMU sensor. They used five 

different ranking algorithms to select feature 

subsets. The feature subsets selected by the T-

score showed the best accuracy of 99.86%. 

Several studies have been conducted on 

developing FFH detection algorithms by 

extending the aforementioned research. (S. Lee et 

al., 2022) performed near-miss fall detection 

based on machine learning with IMU sensor data, 

where the algorithm showed 86.8% accuracy in 

the laboratory and 85.2% accuracy outdoors. (A. 

Dogan et al., 2018) performed an FFH detection 

study by calculating the fall height from three-

axis acceleration data, with an overall error rate 

of 10.8%. (Koo et al., 2021) developed an FFH 

detection algorithm by calculating the vertical 

velocity and the trunk angles from IMU data and 

reported that 100% accuracy and a lead time of 

301.8 ± 87.8 ms were obtained. To increase 

survival rates after FFHs (Sciarretta et al., 2018), 

it is important to predict the risk levels of falls. 

(Arena et al., 2016) experimentally confirmed 

that the peak acceleration of the head is between 

4 and 11 m/s2 during falls. The peak acceleration 

value is one of the key measurement factors that 

can affect the severity of injury (Gabriel et al., 

2019).(Kim et al., 2020) proposed a study to 

predict the impact of falls on the elderly with the 

peak acceleration value. A regression analysis 

was performed using a deep learning algorithm 

based on IMU sensor data, and its results showed 

a mean absolute percent error of 6.69 ± 0.33% 

and an R-value of 0.93. The risk of FFH accidents 

can be represented using the peak acceleration 

value. Risk prediction is more necessary and 

challenging to discriminate since FFH accidents 

result in more fatal injuries. 

 

Similarly, (Lopez et al., 2022) conducted a risk 

analysis of falling from heights in the growing 

construction industry. Their study employed 

statistical and machine learning models to 

identify the key factors contributing to fall 

incidents and to develop predictive models for 

assessing fall risks. The findings of their study 

highlighted the importance of integrating various 

risk factors, such as worker experience, safety 

training, and environmental conditions, into a 

comprehensive fall risk assessment framework. 

Identifying and classifying the factors causing 

fall-from-height accidents is crucial for 

developing effective prevention strategies. (M. 

Arif et al., 2022) conducted a study focusing on 

the identification of fall events and classification 

of the factors causing fall from height accidents 

in the construction industry. Their research 

employed data mining and classification 

algorithms to analyze and categorize the 

contributing factors of fall incidents. The study 

identified several critical factors, including 

inadequate safety measures, lack of training, and 
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human error, which significantly increase the risk 

of falls from height. In addition to identifying and 

classifying fall risk factors, predicting the 

severity of falling risks for workers at height is 

equally important for implementing targeted 

prevention measures. (Chen and Luo, 2016) and 

(Chen and Luo, 2016) developed severity 

prediction models of falling risk for workers at 

height using advanced machine learning 

techniques. Their study utilized historical 

accident data and various ML algorithms to 

predict the severity of fall risks based on factors 

such as the height of the fall, the worker's 

position, and the safety equipment used. The 

predictive models developed in their study 

demonstrated high accuracy in assessing the 

severity of falling risks, thereby enabling more 

effective allocation of resources and 

implementation of preventive measures. While 

machine learning models hold immense potential 

for predicting FFH risk in construction, their 

"black box" nature can be a significant hurdle. As 

(Rudin et al., 2019) aptly points out, the lack of 

transparency in these models hinders trust and the 

effectiveness of preventative measures. 

Stakeholders in construction need to understand 

the "why" behind the model's predictions to 

implement targeted interventions.  

  

2.1 Causes and Effects of Fall from Height 

(Cole, 2019) OSHA regulations require fall 

protection at varying heights depending on the 

industry, but worker discomfort with personal 

protective equipment (PPE) can lead to unsafe 

practices. (Vosoughi et al., 2020) Other 

contributing factors include inadequate training, 

poor equipment, unsafe work environments, and 

communication issues. These accidents cause 

significant human suffering, with fatalities, 

injuries, and psychological impacts on workers 

and their families. Economically, FFH accidents 

lead to project delays, medical costs, lost 

productivity, and damage reparations. The causes 

and effects of FFH accidents as outlined by 

(Studies, 2023), focusing on five categories of 

causes and the humanitarian and economic 

consequences of these incidents. 

2.1.1  Risk Behavior 

1. Personal protective equipment (PPE): 

Several studies underscore the crucial role of 

Personal Protective Equipment (PPE) in 

mitigating the dangers of falls from height 

(FFH). (Lopez et al., 2022) conducted 

research that specifically emphasizes the 

prevalence of FFH fatalities within the US 

construction industry. Their analysis revealed 

a concerning trend: a significant portion of 

these fatal incidents involved workers who 

were not documented as utilizing proper PPE. 

This finding highlights a critical safety lapse, 

as appropriate PPE can significantly reduce 

the severity of fall injuries or even prevent 

them altogether. Similarly, (Nadia et al., 

2022) conducted research focused on FFH 

accidents in Malaysia. Their investigations 

identified a conspicuous absence of fall arrest 

systems as a major contributing factor.  

2. Rush to work: One of the most concerning 

behavioral factors contributing to fall-from-

height (FFH) incidents is the prevalence of 

rushing at work. When faced with time 

constraints and pressure to complete tasks 

rapidly, workers may be more likely to 

prioritize speed over safety. This 

prioritization can lead to a disregard for 

established safety protocols or a failure to 

utilize proper fall protection equipment. 

Research by (Rodrigues et al., 2022) provides 

empirical evidence to support this 

connection. Their study identified financial 

constraints and the pressure to finish jobs 

quickly as significant factors contributing to 

FFH accidents.  

3. Mistakes in making decisions: One of the 

most concerning aspects of fall hazards in 

construction work is the potential for human 

error in decision-making. Instances of poor 

judgment, such as working too close to an 

edge without appropriate fall protection 

measures in place, can have devastating 

consequences. Research by (Manzoor et al., 

2021) emphasizes the crucial role of 

cultivating a strong safety culture within 

construction environments.  

2.1.2 Unsafe Conditions 

1. The open edge of the building: One of the 

most critical fall hazards in high-rise 

construction environments is the presence of 

unguarded edges. A recent study by (Arif et 

al., 2021) exemplifies this danger. Their 

investigation into a fall accident on a high-

rise building project highlighted the critical 

role of proper edge protection systems in 

preventing such tragedies.  

2. Hole in the floor: One of the most prevalent 

fall hazards in construction environments 
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involves inadequately addressed floor 

openings. Uncovered or poorly marked holes, 

such as those created for elevator shafts, 

utility access, or other construction purposes, 

present a substantial risk of falls for workers. 

(Nowobilski and Hoła, 2023) aptly highlight 

the critical importance of effectively 

identifying and demarcating these hazards.  

3. Unsuitable scaffold: Highlighting the 

inherent risks associated with falls from 

height, a crucial contributing factor lies in the 

utilization of unsuitable scaffolding. Faulty 

construction or improper assembly practices 

significantly elevate the probability of falls 

for workers on these temporary structures.. 

4. Lack of lighting: One of the significant 

environmental hazards contributing to falls in 

construction work environments is 

inadequate lighting. When faced with poor 

lighting conditions, workers experience 

compromised visibility. This diminished 

ability to see their surroundings clearly can 

have a two-fold effect, significantly 

increasing the risk of falls. Firstly, the 

inability to discern potential tripping hazards 

on the ground, such as uneven surfaces, 

debris, or loose materials, can lead to 

missteps and subsequent falls. Secondly, 

poor lighting can hinder the accurate 

perception of distances. This can cause 

workers to misjudge the depth of drops or the 

height of platforms, potentially resulting in 

falls from elevated work areas. Research by 

(Manzoor et al., 2021) emphasizes the critical 

role of proper illumination at construction 

sites, particularly during periods of low 

natural light or when working in enclosed 

spaces. By ensuring adequate lighting is 

provided throughout the worksite, the risk of 

falls due to impaired visibility can be 

significantly mitigated, promoting a safer 

work environment for construction 

personnel. 

5. Poor housekeeping: In the pursuit of 

workplace safety, maintaining a well-

organized and clutter-free environment plays 

a crucial role in preventing falls. Research by 

(Nadia et al., 2022) underscores this critical 

aspect, highlighting the significant 

contribution of poor housekeeping to slip, 

trip, and fall incidents. The presence of 

clutter and debris on work surfaces creates 

uneven walking paths, concealed obstacles, 

and potential tripping hazards.  

2.2.3 Management and Organization 

1. Training: One significant factor contributing 

to construction site fall incidents is the 

inadequacy of training provided to workers 

regarding fall prevention measures and safe 

work practices. This lack of preparatory 

instruction leaves them poorly equipped to 

identify and effectively mitigate potential fall 

hazards within their work environment. 

Research has consistently underscored the 

importance of comprehensive safety training 

programs in bolstering construction workers' 

knowledge and awareness. Studies conducted 

by (Acion et al., 2017) and others serve as 

prime examples, demonstrating the critical 

role that such training plays in fostering a 

safety-conscious workforce. By equipping 

workers with the necessary skills to recognize 

falls and implement appropriate preventative 

measures, these programs can significantly 

reduce the likelihood of fall-related accidents 

in the construction industry. 

 

2. Management commitment to the work 

program: One crucial determinant of a 

construction site's fall prevention success 

hinges on the unwavering commitment of its 

management team to the established safety 

work program. A safety-centric company 

culture fostered and actively championed by 

leadership plays a pivotal role in ensuring 

worker well-being. Research by (Vosoughi et 

al., 2020) underscores this critical link. Their 

findings demonstrate a clear correlation 

between a lack of management commitment 

to safety protocols and an alarming rise in the 

number of fall-related incidents within the 

construction industry.  

3. Lack of work procedures: The inherent 

dangers associated with construction work, 

especially tasks involving heights, 

necessitate the implementation of well-

defined and documented work procedures. 

The lack of such established protocols can 

have detrimental consequences, fostering 

confusion amongst workers and significantly 

increasing the risk of unsafe practices. This 

notion is further underscored by (Manzoor et 

al., 2021), who highlight the critical role of 

standardized procedures in mitigating such 

risks. By outlining clear and consistent steps 

for various construction activities, 

particularly those at elevated levels, these 
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procedures ensure a uniform approach that 

prioritizes safety.  

4. Lack of supervision: The absence of effective 

supervision on construction sites is a well-

documented contributing factor to falls from 

height (FFH). When supervisors fail to 

adequately monitor worker activity, unsafe 

practices can become commonplace, 

significantly increasing the risk of falls. 

Research by (Shi et al., 2019) underscores the 

crucial role of proper supervision in 

mitigating FFH hazards. Effective 

supervisors are not only responsible for 

ensuring workers adhere to established safety 

protocols, such as proper harness usage and 

utilizing fall protection equipment, but also 

for actively identifying and addressing 

potential falls present in the work 

environment.  

5. Non-provision of PPE: The absence of proper 

Personal Protective Equipment (PPE) 

presents a significant safety hazard for 

workers, particularly those at risk of falls 

from height. Research by (Nadia et al., 2022) 

underscores the critical role of employers in 

mitigating these risks. Their study highlights 

the legal and ethical responsibility of 

employers to furnish their workforce with 

adequate fall protection equipment.  

6. Fatigue: One significant contributing factor 

to falls from height (FFH) is worker fatigue. 

When workers experience physical and 

mental exhaustion, their cognitive abilities 

become impaired. This translates to a 

heightened risk of errors in judgment, 

specifically regarding safety protocols and 

hazard identification. Additionally, reaction 

times significantly decrease, hindering the 

ability to react swiftly and effectively in 

precarious situations. Research conducted by 

(Manzoor et al., 2021) underscores the 

critical role of implementing proper work 

schedule management strategies.. 

2.2.4 Job Factor 

1. Material Preparation: During construction 

projects, material preparation and handling at 

elevated locations pose a significant safety 

hazard. Research by (Arif et al., 2022) 

underscores the critical role of meticulous 

planning and the utilization of designated 

lifting equipment in mitigating falls 

associated with material management at 

height. (Manzoor et al., 2021) highlight the 

need for proper fall protection measures 

specific to the type of structural work being 

undertaken. 

2. Scaffolding Malfunction: The construction 

industry presents inherent safety risks, and 

scaffolding erection and dismantling are 

particularly hazardous activities. 

(Nowobilski et al., 2023) rightly highlight the 

critical role of adhering to established safety 

protocols and employing qualified personnel 

throughout the scaffolding lifecycle. In 

conclusion, prioritizing proper scaffolding 

construction and dismantling practices, as 

advocated by (Nowobilski et al., 2023), is an 

essential step towards safeguarding workers 

from potentially life-threatening fall hazards. 

2.2.5 External Factors 

1. Weather: Construction work inherently takes 

place outdoors, exposing workers to various 

weather conditions that significantly impact 

fall hazards. Adverse weather events like 

rain, snow, or strong winds can dramatically 

transform work surfaces, rendering them 

slippery and unstable. This heightened 

instability significantly increases the 

likelihood of falls from heights. Research by 

(Manzoor et al., 2021) underscores the 

critical importance of proactively adjusting 

work practices to mitigate these risks.. 

2.3 Concept of Artificial Intelligence (AI) 

and Machine Learning 

Artificial Intelligence (AI) is a specialized area 

within computer science that focuses on 

developing systems capable of performing tasks 

typically requiring human intelligence, such as 

decision-making, problem-solving, and learning 

(Adenuga et al., 2022). Recent advancements 

have seen AI applications flourish in various 

industries, particularly in scenarios demanding 

high precision and minimal human intervention. 

The integration of AI into various sectors has 

significantly enhanced productivity and 

accuracy, particularly in the domain of predictive 

analytics, such as fall prediction in construction 

settings. The ability to anticipate and mitigate 

risks associated with falls has become 

increasingly important as populations age and 

healthcare systems strive for preventive care 

measures. In the context of big data, where vast 

amounts of information are processed, AI and its 

subset, machine learning, offer robust tools for 
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analyzing complex datasets and providing 

actionable insights (Sciarretta et al., 2018). 

Machine learning algorithms, particularly those 

employed in predicting events such as falls, have 

shown high accuracy and reliability, thereby 

supporting clinical decisions such as those 

presented by (Akazue et al., 2023) for prediction 

of survivability of Diabetes Melitus, Okpakoet 

al., (2019) for the prediction and managing of 

comorbid diseases using neutrosophic logic and 

machine learning, (Okpako et al., 2021) for 

decision support system for effective diagnosis of 

liver disease using neutrosophic logic  

 

This adaptive capability allows computers to 

recognize patterns and relationships in large 

datasets, facilitating predictions and decision-

making processes based on empirical data 

(Thisovithan et al., 2023). A machine learning 

model, according to (Lundberg et al., 2020), is 

essentially a trained system capable of identifying 

specific patterns. This process involves training 

the model with a dataset and an algorithm to 

generalize and predict outcomes based on new, 

unseen data. 

Machine learning has transformative impacts 

across various industries, including healthcare, 

where it is used for diagnostic predictions, 

treatment personalization, and risk assessment. In 

the context of fall prediction, different machine 

learning models, such as Artificial Neural 

Networks (ANNs), Support Vector Machines 

(SVMs), and others, is utilized to predict the 

likelihood of falls in patients, thereby aiding in 

preventive measures. 

 

2.3.3 Random Forest Classifier 

Random Forest (RF) classifiers have emerged as 

a robust and versatile method in machine learning 

for both classification and regression tasks. 

Boateng et al. (2020). The concept was presented 

by Leo Breiman in 2001, which extended the idea 

of decision trees into an ensemble method that 

aggregates multiple decision trees to improve 

classification accuracy and control overfitting 

Breiman (2001). RF classifiers avoid overfitting 

by ensuring that the individual decision trees are 

not highly correlated and by applying the Strong 

Law of Large Numbers to guarantee convergence 

(Boulesteix et al. 2018). RFs aim to reduce the 

correlation between trees while maintaining their 

strength (Jahani et al. 2022). While AdaBoost 

adjusts sample weights in response to 

classification errors, RF introduces randomness 

in feature selection, leading to similar accuracy 

but with increased robustness to noise and 

outliers (Yusuf et al. 2021). The lower correlation 

among trees in RF contributes to its resilience 

against noisy data, which often affects 

AdaBoost’s performance (Wang et al., 2024). 

 

While Random Forests offer high accuracy and 

robustness, there are some drawbacks. One of the 

challenges is interpretability. The "black-box" 

nature of ensemble methods like RF makes it 

difficult to interpret individual tree decisions 

(Gerón et al., 2023). To mitigate this, several 

techniques, such as variable importance scores 

and partial dependence plots, have been 

developed to offer insight into how RF makes 

predictions (Greenwell et al., 2017). Rana G., 

(2017) also highlighted the computational burden 

when dealing with extremely large datasets or 

when the number of trees becomes excessively 

large. Although RF is generally faster than 

boosting methods like AdaBoost, the 

computational complexity increases linearly with 

the number of trees and features (Wyner et al., 

2017). 

 

2.5 Black Box vs White Box Machine 

Learning Models 

In the field of machine learning, particularly 

within applications involving safety-critical areas 

such as construction, the ability to explain 

predictive outcomes to stakeholders is 

paramount. This capability is crucial for the 

development of trustworthy AI systems, 

especially when predicting potentially hazardous 

events like falls from heights. The selection of an 

appropriate machine learning model often 

involves a trade-off between accuracy and 

interpretability. This dichotomy is typically 

characterized by 'black-box' and 'white-box' 

models. 

2. Black-box Models and Accuracy: Black-box 

models, such as neural networks, gradient 

boosting machines, and complex ensembles, 

are known for their high predictive accuracy. 

However, these models are inherently 

opaque, making it challenging to discern the 

importance of individual features or 

understand the interactions between them. 

The internal mechanics of these models are 

often inscrutable, which can hinder 

stakeholders' trust and the model's practical 

application in scenarios where transparency 

is critical (Ribeiro et al., 2016). 
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• White-box Models and Interpretability: In 

contrast, white-box models, such as linear 

regression and decision trees, offer greater 

interpretability. These models allow for a 

clearer understanding of how predictions are 

derived, as they provide explicit relationships 

between inputs and outputs. However, they 

may lack the predictive power of more 

complex models, particularly when dealing 

with intricate data patterns involving non-

linear interactions among features (Guide et 

al., 2021). 

 

2.6 Optimizing Machine Learning Models 

Optimizing machine learning models is crucial 

for improving their predictive accuracy and 

generalizability. This process often involves 

hyperparameter tuning, which adjusts the 

learning algorithm's settings to achieve the best 

performance on a given task (Bergstra et al., 

2012). In the context of fall prediction, 

optimization techniques such as grid search, 

random search, and more sophisticated methods 

like Bayesian optimization and evolutionary 

algorithms can be employed to fine-tune model 

parameters and enhance predictive capabilities 

(Bengio et al., 2014). 

 

2.7 Explainable Artificial Intelligence (XAI)  

 

2.7.1 What is Explainable AI? 

Explainable artificial intelligence (XAI) refers to 

a collection of procedures and techniques that 

enable machine learning algorithms to produce 

output and results that are understandable and 

reliable for human users (Neupane et al., 2022). 

Explainable AI is a key component of the 

fairness, accountability, and transparency (FAT) 

machine learning paradigm and is frequently 

discussed in connection with deep learning. 

Organizations looking to establish trust when 

deploying AI can benefit from XAI. XAI can 

assist them in comprehending the behavior of an 

AI model and identifying possible problems like 

AI. 

 

2.7.2 Origin of Explainable AI 

The origins of XAI can be traced back to the early 

days of machine learning research when scientists 

and engineers began to develop algorithms and 

techniques that could learn from data and make 

predictions and inferences (Doran et al., 2018). 

As machine learning algorithms became more 

complex and sophisticated, the need for 

transparency and interpretability in these models 

became increasingly important, and this need led 

to the development of explainable AI approaches 

and methods. 

 

 

 
Figure 2.1 XAI diagram (source:  

https://www.darpa.mil/program/explainable-

artificial-intelligence)  

One of the key early developments in XAI was 

the work of (Rai et al., 2020), who introduced the 

concept of causality in machine learning, and 

proposed a framework for understanding and 

explaining the factors that are most relevant and 

influential in the model’s predictions. This work 

laid the foundation for many of the explainable 

AI approaches and methods that are used today 

and provided a framework for transparent and 

interpretable machine learning. 

 

Another important development in explainable 

AI was the work of (Ignatiev et al., 2020) LIME 

(Local Interpretable Model-agnostic 

Explanations), which introduced a methodfor 

providing interpretable and explainable machine 

learning models. This method uses a local 

approximation of the model to provide insights 

into the factors that are most relevant and 

influential in the model’s predictions and has 

been widely used in a range of applications and 

domains. 

One of the main themes emphasized is the need 

for trustworthy AI systems. A study (Ignatiev et 

al., 2020) highlights that XAI is crucial for 

building trust by making AI decision-making 

more transparent and accountable. This aligns 

with broader ethical considerations in AI 

development, where explainability is essential for 

ensuring responsible and unbiased AI 

applications. Trust is fundamental in human 

interaction, and it's no different with AI systems. 

When we don't trust a system, we're less likely to 

use it or rely on its outputs. XAI helps bridge this 

trust gap by providing users with insights into 

https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
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how AI models arrive at their decisions (Marcin 

C., 2020). By understanding the reasoning behind 

these decisions, users can assess the fairness, 

reliability, and appropriateness of the AI's output. 

Furthermore, XAI can help hold AI systems 

accountable for their actions. If an AI system 

makes a harmful or incorrect decision, XAI can 

provide explanations that can be used to identify 

and rectify the underlying cause of the problem. 

In this way, XAI contributes to the development 

of more ethical and trustworthy AI systems (Hall 

et al., 2022). 

The need for interpretability goes beyond 

general-purpose models. While general 

techniques exist, their effectiveness can vary 

depending on the application. (Stefano M., 2013) 

addressed this by developing specialized methods 

for interpreting forecasting models. These 

methods illuminate how specific features 

contribute to the final prediction, enabling users 

to understand the rationale behind the forecast. 

Similarly, (Brusa et al., 2023) focused on 

machine fault diagnosis, where understanding 

feature contributions within the model is crucial 

for targeted maintenance interventions. These 

works highlight the importance of tailoring 

interpretability techniques to the specific task and 

data, considering factors like the type of 

predictions being made and the desired level of 

detail for actionable insights. 

Case studies, like the one by (Vishwarupe et al., 

2022), offer valuable perspectives on XAI by 

showcasing its practical applications and real-

world benefits. By examining specific use cases, 

this work demonstrates how interpretable 

machine learning techniques can empower users 

with deeper insights and enhance decision-

making processes. Case studies can serve as 

crucial bridges between theoretical advancements 

in XAI research and their practical 

implementation in diverse applications. For 

instance, a case study might explore how an 

interpretable model is used to identify fraudulent 

transactions in a financial setting. By 

understanding the features that contribute most to 

the model's fraud classification, analysts can gain 

valuable insights into emerging fraud patterns 

and develop more effective detection strategies. 

Similarly, a case study in the healthcare domain 

might examine how an interpretable model is 

used to predict patient outcomes. By explaining 

the model's reasoning behind a particular 

prediction, doctors can gain a deeper 

understanding of the factors influencing patient 

health and make more informed treatment 

decisions. These are just a few examples of how 

case studies can illuminate the practical value of 

XAI in various real-world scenarios. 

Deep learning models, despite their impressive 

performance, pose unique challenges in terms of 

interpretability due to their complex architecture 

and non-linear relationships between input 

features and outputs. (Samek et al., 2017) 

explored techniques for visualizing and 

interpreting deep learning models. They 

presented methods like sensitivity analysis and 

layer-wise relevance propagation, which provide 

insights into the inner workings of these complex 

neural networks. By visualizing the importance of 

input variables and decomposing model 

predictions, researchers can gain a deeper 

understanding of how deep learning models 

arrive at their decisions. 

(Rudin et al., 2019) Challenge the prevailing 

reliance on black-box models in AI development. 

Their work demonstrates that interpretable 

models can often achieve performance on par 

with black boxes while maintaining crucial 

transparency. This highlights the importance of 

prioritizing interpretability as a core design 

principle from the very beginning of AI system 

creation. Instead of attempting to explain opaque 

models after the fact, focusing on inherent 

interpretability fosters the development of 

trustworthy and readily understandable AI 

systems – a crucial step towards a future of 

responsible and collaborative human-AI 

interaction. 

 

2.7.2 Machine Learning and Fall from Height  

The construction industry faces a persistent and 

critical challenge: FFH (Zlatar et al., 2019). 

These incidents remain a leading cause of severe 

injuries and fatalities for construction workers, 

posing a significant threat to their well-being. 

However, the landscape of construction safety is 

evolving alongside technological 

advancements(Sciarretta et al., 2018). The rise of 

ML offers immense potential for developing 

proactive solutions to mitigate FFH.  

Building upon the need for systematic 

preventative strategies,(Guo, 2018) made a 

significant contribution by introducing an 

ontology specifically focused on control 

measures for FFH in construction. This ontology 

serves as a foundational framework by 

categorizing and classifying various preventative 

approaches. By providing a structured 
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understanding of these control measures, Guo et 

al.'s work paved the way for more effective FFH 

prevention strategies. 

Standardized training programs have been 

investigated as a potential approach to reducing 

FFH within the construction industry. Research 

by (Zhong et al., 2023) explored the effectiveness 

of these programs, finding that they play a crucial 

role in equipping workers with the necessary 

knowledge and skills to identify and mitigate fall 

hazards. Standardized training programs ensure 

consistency in the information delivered to 

workers across different construction companies 

and project sites. This consistency helps to ensure 

that all workers have a baseline understanding of 

fall safety procedures and best practices, 

regardless of their experience level or specific 

role on a project. 

(Samad et al., n.d.) addressed the crucial issue of 

fall event identification and classification in 

construction. Their work sheds light on the 

various factors contributing to FFH accidents, 

providing valuable insights into potential risk 

areas for targeted mitigation strategies. Further 

contributing to a comprehensive understanding of 

FFH causality,(Vosoughi et al., 2020)leveraged 

the Analytical Hierarchy Process (AHP) to 

systematically analyze the multifaceted causes of 

these incidents. Their research highlights the 

importance of considering a range of contributing 

factors, such as worker behavior, environmental 

conditions, and equipment deficiencies, when 

developing preventative measures. By delving 

deeper into the root causes of FFH accidents, 

these studies pave the way for the development of 

more effective safety interventions in the 

construction industry. 

(M. A. I. Arif et al., 2021)survey XAI techniques 

to address the limitations of opaque AI models. 

XAI methods bridge the gap between human 

understanding and complex algorithms, 

providing explanations for AI decisions in a way 

that is comprehensible to humans. This fosters 

trust in AI systems and promotes the development 

of responsible AI applications. 

(Machlev et al., 2022) explore XAI for power 

systems, aiming to address the "black box" nature 

of machine learning (ML) models. XAI 

techniques provide insights into model decisions, 

fostering trust and enabling optimization. 

Challenges include DL complexity, 

explainability requirements, and performance 

trade-offs. The paper reviews common XAI 

methods and their applications in power systems. 

(Chen et al., 2016) recognized the potential of 

predictive analytics for fall risk assessment in 

construction. They proposed severity prediction 

models to assess fall risk for workers at height, 

demonstrating the value of data-driven 

approaches in proactively identifying and 

mitigating FFH incidents. This focus on proactive 

risk assessment aligns with the broader body of 

research that emphasizes preventative measures.  

(Huang et al., 2003) conducted a valuable 

analysis of construction worker fall accidents, 

highlighting the critical need for robust risk 

assessment methods to prevent such occurrences 

(Rivara et al., 2000; Huang et al., 2003). By 

building on these foundational works, this 

research project aims to explore how Machine 

Learning can be harnessed to develop more 

sophisticated and proactive fall risk assessment 

models. By leveraging machine learning 

algorithms and their ability to identify complex 

patterns within data sets, this project has the 

potential to move beyond basic severity 

prediction and progress toward real-time risk 

assessment and targeted preventative actions. 

This paper by (El Marhraoui et al., 2023) 

investigates the use of interpretable artificial 

intelligence (XAI) for fall risk detection in elderly 

populations. Early identification of fall risk is 

essential for preventing injuries and improving 

quality of life. Traditional fall risk assessment 

methods like the TUG test are subjective, 

inaccurate, and limited in monitoring capabilities. 

AI-powered fall risk detection using wearable 

sensors (e.g., IMUs) offers continuous 

monitoring and personalized risk assessment 

based on gait data. However, health professionals 

need to understand the reasons behind AI 

predictions for effective interventions. This study 

proposes an XAI-based approach for fall risk 

detection using IMU sensors. The model employs 

a visual self-attention mechanism to pinpoint 

critical moments with high fall probability, such 

as rapid vertical acceleration. This interpretability 

allows healthcare professionals to validate 

medical hypotheses, develop targeted prevention 

strategies, and improve patient trust in AI-

powered healthcare tools. Overall, the research 

promotes the development of accurate and 

interpretable AI models for fall risk detection. 

The XAI approach fosters trust in AI and 

empowers healthcare professionals to personalize 

fall prevention strategies, ultimately improving 

patient care and safety. 

Program et al. (2023) this study investigates the 
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causes of FFH accidents in Saudi Arabia's 

construction industry. Common causes were 

identified via literature review and categorized 

into four areas: unsafe acts, unsafe conditions, 

communication barriers, and management 

commitment. A questionnaire targeting 

construction professionals explored these causes. 

Analysis (91 responses) revealed "unsafe acts" as 

the most prominent category, with lack of 

training, safety inspections, and communication 

between stakeholders being the top three causes 

of FFH accidents. The study suggests that safety 

programs, inspections, and improved 

communication can reduce FFH accidents. 

Doran et al., (2018) argues that explainable AI 

(XAI) is crucial for understanding complex AI 

models and proposes a new way to categorize 

XAI approaches. The paper identifies four levels 

of explainability: opaque systems (no 

explanation), interpretable systems 

(mathematical analysis), comprehensible systems 

(user-driven explanations from symbols), and a 

novel concept, truly explainable systems, which 

use automated reasoning to generate explanations 

without human intervention. The paper also 

explores how different AI fields approach 

explainability and discusses desirable traits for 

XAI systems, such as trust, safety, and fairness. 

Overall, Doran's work advances the discussion on 

XAI by highlighting the importance of reasoning 

and proposing a new category that moves beyond 

human-driven explanation creation. 
Mankodiya et al., (2022) this paper proposes a 
wearable sensor-based fall detection system with 
explainable AI (XAI) for improved user trust and 
transparency. The system uses an LSTM model 
trained on multi-sensor data to achieve accurate 
fall detection, and LIME to explain the model's 
decisions. This approach addresses the 
limitations of existing methods by using multiple 
sensors and offering interpretability. The system 
has the potential to enhance safety for older adults 
living independently. 

 

3. ANALYSIS OF THE EXISTING 

SYSTEM 

Effective fall prevention strategies to safeguard 

the wellbeing of construction workers is a major 

concerns in the construction industry, it is 

therefore imperative to have a system that will 

enhance fall risk assessment and prevention by 

leveraging machine learning(ML) and artificial 

Intelligence(AI) techniques . Many existing 

systems have (Lee et al., 2022) employed 

different approaches in solving this phenomenal 

problem in construction sites, yet there is still 

room for improvement so as to handle the 

disastrous effect and cost associated with it. 

A detailed review and analysis of the existing 

system of was carried out to bring to fore areas 

that needs improvement in order to tacckle the 

problem. The paper reviewed the following: 

i. The approaches and methods used in 

the existing system 

ii. The decision making process 

iii. Support for transparency in decision 

making process 

Architecture of the Existing System 

The existing system of lee et al. (2022) was used 

where they recruited 20 healthy adult males from 

Yonsei University (mean age: 24.8 years). 

Participants with musculoskeletal problems were 

excluded. The study collected triaxial 

acceleration and angular velocity data from 

participants wearing an IMU sensor at the T7 

vertebrae during various movements (walking, 

falling forward). A dummy was used for high-

hazard falls (>2 meters).The data was pre-

processed for training deep learning models. 70% 

of human data and 60% of dummy data were used 

for training, with the remaining data for testing. 

Two key features were extracted: acceleration 

and gyro sum vector magnitudes (ASVM, 

GSVM). Eight features in total were used to train 

the models. A 0.9-second window before the peak 

ASVM was analyzed.  Three deep learning 

models (1D-CNN, 2D-CNN, 3D-CNN) were 

developed using Python 3.9 and TensorFlow 

2.9.0. Hyperparameter optimization ensured 

optimal performance. The models' performance 

was assessed using Mean Absolute Error (MAE) 

and Mean Squared Error (MSE) to quantify the 

difference between predicted and measured peak 

acceleration values. 

A typical architecture of the existing system is 

shown in Fig 3.1. 
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Figure 3.1 Architecture of the Existing System 

(source:(Lee et al., 2022))  

3.2.1 Limitation of the Existing System 

1. Limited Dataset: The study is based on a 

small dataset collected from 20 subjects, 

which may not cover the entire range of 

possible movements in real-world 

construction sites. This limits the 

generalizability of the system. 

2. Data Imbalance: The system faced challenges 

with data imbalance, as fewer high-hazard 

fall movements were available compared to 

non-fall movements. This affects the 

performance of some models, especially 

LSTM and 2D-CNN, leading to 

underestimation of high-risk falls. 

3. Dummy Data for High-Risk Falls: For safety 

reasons, a dummy was used for high-hazard 

falls, which may not accurately capture the 

nuances of human movements, potentially 

leading to discrepancies in real-life 

applications. 

4. Sensor Placement: The IMU sensor is placed 

only at the T7 position, which may limit the 

detection of certain types of movements or 

falls. Additional sensors might be needed to 

cover more complex scenarios. 

5. Overfitting in Some Models: The system uses 

early stopping and dropout layers to prevent 

overfitting, but the issue is still prevalent in 

some models, particularly in cases where the 

dataset is limited. 

The machine learning model (CNN) used lacked 

transparency in its decision-making process. This 

can be a concern for users and construction 

professionals who rely on the system's outputs for 

critical decisions. To address this limitation, we 

propose an enhanced system that integrates 

Explainable AI (XAI) with the existing approach. 

This combined system aims to improve fall 

prediction accuracy while simultaneously 

enhancing transparency and trustworthiness by 

explaining the model's predictions. By 

incorporating XAI, users and construction 

workers can gain insights into the factors that 

influence the model's decisions, fostering trust 

and confidence in its effectiveness.  

1.3 Analysis of the Proposed System Model 

The proposed system for proactive fall prediction 

in construction sites integrates a Random Forest 

Classifier with a Lime Tabular Explainer, 

focusing on creating an explainable AI-based 

machine learning model. This hybrid approach 

leverages the predictive power of Random 

Forests, a robust ensemble learning method, 

along with the interpretability offered by the 

LIME framework. 

3.3.2 Development of the Proposed Model 

The model development utilizes the Random 

Forest Classifier, an ensemble method known for 

its effectiveness in handling complex data 

patterns. Random Forests operate by constructing 

multiple decision trees during training and 

outputting the mode of the classes for 

classification tasks. This method is particularly 

advantageous in dealing with the high-

dimensional and noisy data often encountered in 

construction site safety monitoring. The LIME 

(Local Interpretable Model-agnostic 

Explanations) framework enhances the model's 

interpretability by explaining the predictions of 

the Random Forest. LIME operates by 

approximating the model locally with 

interpretable models, thus providing insights into 

the contribution of different features towards the 

prediction of falls. 

3.3.3 Architecture of the Proposed System 

The architecture of the proposed system, depicted 

in Figure 3.2, illustrates the integration of the 

Random Forest Classifier with the LIME 

framework. The process begins with the Random 

Forest Classifier receiving input data, which it 

processes through multiple decision trees to make 

predictions. The resulting predictions are then 

analyzed using LIME to provide feature-level 

explanations. LIME operates by: 

Dataset 

ASVM 

GSVM 

Result 

MODEL 

1-D CNN 2-D CNN 

Convo-LSTM LSTM 
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1. Generating a new dataset consisting of 

perturbed samples around the instance to be 

explained. 

2. Using these samples, fits a simple, 

interpretable model (such as a linear model) 

locally to approximate the predictions of the 

Random Forest. 

3. Providing insights into which features have 

the most significant impact on the prediction, 

thereby highlighting potential risk factors 

associated with falls. 

This combined approach not only enhances the 

model's predictive capabilities but also ensures 

that the predictions are transparent and 

interpretable, crucial for safety-critical 

applications. The 

 proposed system’s architecture ensures a 

continuous feedback loop where model 

predictions and explanations can be used to refine 

safety protocols and training procedures on 

construction sites, thereby proactively mitigating 

the risk of falls. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Proposed System Architecture 

3.3.4 Algorithm of the Proposed System 

An algorithm is a step-by-step blow of how 

the procedure is carried out. The algorithm 

for this study is outlined as follows. 

Data Preprocessing Phase  involves preparing 

the raw data for model training and 

evaluation. 

1. Data Cleaning: 

• Handling Missing Values: Missing 

values are addressed using 

appropriate techniques such as 

imputation or removal. 

• Outlier Detection and Removal: 

Outliers, which can significantly 

impact model performance, are 

identified and removed or corrected. 

• otherwise. 
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2. One-Hot Encoding: Categorical 

features are converted into numerical 

representations using one-hot encoding. This 

technique creates a new binary feature for 

each category, with a value of 1 indicating the 

presence of that category and 0 

3. Data Balancing: 

• SMOTE (Synthetic Minority Over-

sampling Technique): This technique 

addresses class imbalance by 

generating synthetic samples for the 

minority class (i.e., fall incidents). 

• SMOTE-Tomek: This technique 

combines oversampling and 

undersampling to balance the dataset. 

It oversamples the minority class and 

undersamples the majority class 

while considering the Tomek links 

between samples. 

4. Data Normalization: 

• Min-Max Normalization: This 

technique scales numerical features to 

a specific range (e.g., 0 to 1). This 

ensures that features with different 

scales contribute equally to the 

model. 

5. Data Splitting: 

• The dataset is divided into training 

and testing sets. Typically, a 70-30 

split is used, with 70% of the data 

allocated for training and 30% for 

testing. 

6. Feature selection and extraction phase 

aims to identify the most relevant features 

and extract eaningful information from 

the data. 

• Recursive Feature Elimination 

(RFE): This wrapper method 

iteratively removes features that have 

the least impact on the model's 

performance. 

• Chi-Square Test: This filter method 

assesses the statistical significance of 

the association between categorical 

features and the target variable. 

7. The model training phase utilizes 

decision trees as the base learners, with 

multiple decision trees trained 

independently on various subsets of the 

training data. To improve robustness, a 

majority voting mechanism is applied to 

aggregate the predictions from these 

individual trees, where the most common 

prediction is chosen. This output is then 

enhanced using the bagging technique, 

specifically through the random forest 

ensemble method, which combines these 

decision trees to generate a final, more 

accurate result. 

8. The trained model is evaluated on the 

testing set to assess its performance. 

I. Performance Metrics: 

• Accuracy: Proportion of correct 

predictions. 

• Precision: Proportion of positive 

predictions that are actually 

positive. 

• Recall: Proportion of actual 

positive cases that are correctly 

identified. 

• F1-Score: Harmonic mean of 

precision and recall. 

• ROC-AUC: Area under the 

Receiver Operating Characteristic 

curve. 

• Confusion Matrix: Visual 

representation of the model's 

classification performance. 

2. Local Interpretable Model-Agnostic 

Explanations (LIME) as an XAI provides 

explanations for individual predictions by 

approximating the model's decision-

making process with a simpler model. 

 

4. CONCLUSION 

In this paper, an analysis of the existing 

systems was carried out and some limitations 

were highlighted for consideration. To make 

proper, reasonable, and appropriate 

prediction of fall from height in construction 

sites, the decision making process must be 

explainable as that will ensure its 

transparency. It is hoped that there will be an 

obvious improvement in the system 
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performance in terms of handling the 

explainability and transparency of its 

prediction. Therefore, this paper proposed a 

framework for a machine learning based fall 

from height prediction using random forest 

and LIME. This will ensure that decisions or 

predictions are explained to ensure 

transparency in the decision making process. 

Future work will delve into the 

implementation of the framework and the 

result of the implementation and its 

evaluation will be provided. 
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