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ABSTRACT

ARTICLE INFO

The modeling stage of response surface methodology (RSM) includes the
application of regression models to estimate the functional relationship between
the response and the explanatory variables which demands using data generated
from an appropriate experimental design. In RSM, the Ordinary Least Squares
(OLS) is traditionally used to model the data via user-specified low-order
polynomials. The OLS model tend to underferformed when the homoscedasticity

Received: 17/06/2024
Accepted: 08/04/2025

Keywords

Correction term,
Desirability function,
Local linear regression
model, Local linear
regression residuals,
Novel integration

assumption is sullied. In the literature, the use of semiparametric regression
models is the preferred techniques in RSM, becauce it combines features of
parametric and nonparametric regression models, unlike the nonparametric
regression models that are affected by the idiocyncracies of RSM data. In this
paper, we consider a novel integration (blend) between an existing adaptive
nonparametric regression model and a locally adaptive bandwidths selector

generated from the explanatory variables for adequate smoothing of the data. The
adaptive nonparametric regression model incorporate local linear regression
(LLR) portion and product of the optimal mixing parameter and, the residuals of
the LLR to provide a second opportunity of fitting part of the data that were not
captured by the LLR model and while the locally adaptive bandwidths addresses
the problems associated with dimensionality, sparsity of RSM data and cost
efficient design. In the application of RSM data, two data type were considered,
and we observed that the goodness-of-fits statistics, zero residual plots, and
optimization results of the novel integration (blend) model when compared with
the OLS, Model Robust Regression 1(MRR1) and Model Robust Regression 2
(MRR2) considerably performed better.

1. INTRODUCTION experimental model building, with the
intention of optimizing the response variables
which is influenced by several explanatory

variables.

Nair et al. (2014) and Yeniay (2014) defined
RSM as statistical technique used by
engineers and industrial statistician for
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RSM is appropriate for optimizing the
response variable y as a function of several
explanatory variables (x;q, X2, - - -, Xix)
which is given as:

vi = (X1, Xigy e X)) + &, 1=1,2,...,n

(1)
where ¢; is the error term and assumed to be
normally distributed with mean zero and
variance 6. The surface as given in (1)
characterized by  f(x;1, xiz, - - -, Xi) IS
termed a response surface (Wan and Birch,
2011).

1.2 Ordinary Least Squares (OLS)

The common method for estimating the
parameter vector is usually based on the
Method of Ordinary Least Squares (OLS).
The parameter vector estimates B is given as:
O = (X'X)'X'y
2
The estimated responses for the i** location
can be written as :
)A,i(OLS) — xgﬁ(OLS) —

x;(X'X)"X'y, i=12,..,n
3)
where x] is the ™ row of matrix
X, X is a matrix with dimension n X (k +
1).
H; = x;(X'X)"1X'is the i*" row of the OLS
“HAT” matrix of dimension n X n, HOLS.
The estimated response in the it" location is
given as:

y(OLS) = Hy .
“)
where the matrix H is given as:
H,
H= I{Z ,
H,
(5)

(Carley, et al., (2004); River (2009))

1.3 MODEL ROBUST REGRESSION 1
(MRRI)

An effective model that addresses the
drawbacks inherent in both parametric and
nonparametric regression models is the use of
semiparametric regression model, Model
Robust Regression 1 (MRR1).

The mathematical expression for the MRR1
as given in Einsporn (1987; 1993)as:

§MRRL) = ) HALR) 4 (1 — 2)§(OLS)

(6)
where the parameter A is the mixing
parameter with an interval [0, 1].

1.4 MODEL ROBUST REGRESSION 2
(MRR2)

Model Robust Regression 2 (MRR2)
combines estimates of parametric regression
model to the raw data, while the
nonparametric regression model portion, uses
the LLR Hat matrix to fit the residuals from
the estimates of parametric regression model
through a mixing parameter, A.

The MRR2 was developed by Mays et al.,
(2001) and is expressed as:

y(MRRZ) — y(OLS) + Af-(LLR)’
FALR) — H,(,LLR)T

(7)
A€[0,1],r =y —y9S is the vector of
residuals that represents the structure in the
data not captured by the user specified
parametric regression model.

15  OPTIMIZATION PHASE IN RSM

This involves the use of optimization tools
(e.g. Genetic algorithm) in finding the
optimal settings of the explanatory variables
for which the fitted regression model is
optimized. In RSM, two types of
optimization problems exist, such as: single
response optimization problem and multiple
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response optimization problems. The last
phase of optimization, is to obtain the overall
desirability, which is the geometric mean of
the individual desirability (Pickle, 2006; He
et al., 2012; Adalarasan and Santhanakumar,
2015; Eguasa et al., 2022).

1.6  ADAPTIVE NONPARAMETRIC
REGRESSION MODEL

In order to address this inadequate utilization
of the flexibility of MRR2, we give the
existing adaptive nonparametric regression
model, PM2 for easy reference.

The mathematical expression of PM2

estimate, 97 is defined by

2

~(PM2 ~(LLR LLR
JEMD _ GULR) 4 §pQLR)]

i (yi -
~(LLR
yi( ))]:

i=12, .., n

(8)

The PM2 is applied in the estimation of the
unknown function f in Equation (1) see
Eguasa et al. (2019).

1.7 LOCALLY ADAPTIVE
BANDWIDTHS SELECTOR

The locally adaptive bandwidths selector
includes two aspects of RMS data namely;
kth number of explanatory variables in the
study and sparseness of the data as given in
Eguasa et al. (2022) can be expressed
mathematically as:

bij = le(%—;f—;]])z, i = 1,2, ...,n;j =
1,2,..,k.

9)
where the locally adaptive optimal
bandwidths from Equation (9) is obtained at
an optimally selected values of Ty, T;;, the
tuning parameters (hereafter referred to as T;;

and T;, respectively), j =1,2,...,k, based

on the minimization of the PRESS**
criterion.

2. METHODOLOGY

In spite of the flexibility of nonparametric
regression methods, they are scantily applied
in RSM due to the idiocyncracies of RSM
data namely; curse of dimensionality,
sparseness of RSM data and cost efficient
design. In this paper, we consider a new
integration between an existing adaptive
nonparametric regression model and a locally
adaptive bandwidths selector generated from
the explanatory variables, which is embedded
in the kernel weight matrix of the adaptive
nonparametric regression model. The
existing nonparametric regression model
incorporate a portion of LLR estimates and
product of the optimal mixing parameter and
the residuals to provide a second opportunity
of fitting part of the data that were not
captured by the LLR portion of the model and
while the locally adaptive bandwidths
addresses the problems associated with
dimensionality, sparsity of RSM data and
small sample size, see (Eguasa et al., 2022).

2.1. INTEGRATING THE ADAPTIVE
NONPARAMETRIC REGRESSION
MODEL AND LOCALLY
ADAPTIVE BANDWIDTHS

In order to address the scanty utilization of
the flexibility of MRR2, we concatinate
Equations (8) and (9) respectively, a novel
blend or approach.

The assumptions of PM2 and locally adaptive
bandwidths are given below:

1 x;€ [0, 1], is a vector of kth

explanatory variables at location i, V i
=1,2,..,nj =12, .. k.
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2. The optimal chosen  tuning
parameters T;; ,T,; >0 in all k
explanatory variables

3. The optimal mixing parameter A €
[0,1]

4. The optimal chosen bandwidths b;; €
0,], vi=12,..,n;j=12,..,k;
for smoothing the data at location i
and k explanatory variables.

The mathematical expression of PM2

estimate, y}"“z) is defined by

Hence, the ANPM2 estimate 5“"""?

L

~(PM2 ~(LLR LLR
M = i( )+’1h§ )[(Yi—

Yi
gERY =12, .,
(8)
1 X ,
bij = Tl](z — E]j)z’ 1 =

1,2,..,m) =12,...k.
9)

The PM2 is applied in the estimation of the
unknown function f in Equation (1). Assoon
as the PM2 and b;; are combined to fit the
data, we have a novel blend or approach
which is now referred to as ANPM2 for easy
referencing.

of the response is given as:

laNPM2) _ x;(LLR)( X' CRY, X(LLR))_l X'URY .y

1(LLR I} * -1_, * 1(LLR '] N -1_, i
2 xl_( )(X (LLR)Wi X(LLR)) X(LLR)Wi [y_ xi( )(X (LLR)WiX(LLR)) X(LLR)Wiy]

where y = (v, ... 7)), 2,0

matrix, X(*'R) given as:

1 X131 X120 - Xk
xan — |1 X1 Xaz o Xk
1 Xn1 Xn2 0 Xpk

(11)

where the kernel weight matrix is given by

wiy 0 - 0
wo= |7 "7 Y i=n
0 0 - wy

(12)
(Wan and Birch, 2011; Eguasa et al., 2019).

(10)

= (1 x;1 ... x;,) is the i*" row of the local linear regression model

The kernel function K (xijb_x” ) is a simplified Gaussian kernel for one explanatory variable case,

ij
given as:
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. _<#>2
Wip = K(—”b”“) =e \ i
ij

(13)

Otherwise, the kernel function is a product kernel given as:
Xij—Xqj Xpj—=X1j .

»wl=[wﬂK<4EfQ/zgﬂnﬁﬂK(ltfﬂ,p=1z“wnJ::Lz"”k

(14)

For i = 1 in Equations (10) and (12), and concantinating the existing bandwidths into the
regression model to obtain a novel adaptive regression model . Thus, we have:

y(ANPMZ) _ x’l(LLR)(XI(LLR)W1X(LLR))_1XI(LLR)W1y n

A;.'I(LLR) (X" URW; X(LLR))—l XL [y _ xll(LLR) (X' WP, X(LLR))—l XI(LLR)le]
(15)
wi; 0 - 0
wo=| 9 Veou 8 (19)
0 0 " Windim

The entries from Equation (16) and the locally adaptive bandwidths of Eguasa et al. (2022) are

translated to estimate $ANPM2,

Wll_ o p=1: 2) rn;j=1r 2; :k
yn_ kg Xpj*1j
p:lHj:l bp]'
(17)
1T =1K<x2£’i; 11)
W12_ P p=1; 21 ;n;]=1; 21 ;k
n k p] "1j
2p=1 HFlK( bpj )
(18)
I =1K(xn;’i; U)
Wln_ X = p:]-) 2! ;n;]:]-; 2; ;k
)
(19)

To estimate, §5NPM2 set | = 2 in Equation (10) and (12), we have:
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’ -1
?QA”PM 2) _ xZ(LLR) ( XI(LLR)WZ X(LLR)) Xx'(LLR) W,y +
1 x'z(LLR) ( X' UR X(LLR))‘1 X URys [y _ x'Z(LLR) ( X' LR, X(LLR))‘1 X', y]

(20)
Wy 0 0
wo=|0 "2 (21)
R

The entries from Equation (21) and the locally adaptive bandwidths of Eguasa et al. (2022) are

translated to estimate y4NVPMZ,

k *1j7%2j

wa=————7Its p=12, ... mj=12.k
SR

(22)

H;¢=1K<x2]bi91521)
Wy = ]. p_]-) 2! :n;j:]-; 2; ;k

n k Xpj~*2j

(23)

(2] |
Won = ————7 p=1 2, ..., nj=12 ..,k

o

(24)

To estimate, §ANPM2 set | = n in Equation (10) and (12), we have:

! ! _1
y;ANPMZ) — xn(LLR)(X (LLR)WnX(LLR)) XI(LLR)Wny +
1 x;l(LLR)(X'(LLR)W;X(LLR))_lX’(LLR)W; [y _ x;l(LLR) (XI(LLR)an(LLR))_lxl(LLR)Wny]

(25)
W1 0 0
wo=|0 “m o 9 (26)
0 0 " Wandguen

The entries from Equation (26) and the locally adaptive bandwidths of Eguasa et al. (2022) are
translated to estimate yAVPM2,
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Wn1 = xij._x p= 11 2 ) ] = 1; 21 ;k
B )
(27)
Hf=1K<x2]b xn])
= Y =1, 2, . nj=1,2,..,k
Wna n X pj=¥n] p ) ’ ;] ) Ly ey
Z””H“K< bpj )
(28)
Hjc=1K<xn]l'7.’.(n]>
_ Y — - —
Wnn = o\ r=1 2, .. ., nj=12, .,k
n k n
(29)

with respective diagonal matrices of kernel weights, W,, Ws, ..., W, follows pattern from
Equations (27, 28 and 29).

Using matrix notation, the ANPM2 can be expressed as:

[R5y + A0y — (1)) |
panpmz) — IthLR)y + ARy — (W) |

lhﬁLLR)y + AhglLLR) (y _ (hglLLR)y)J

(30)
h(lLLR) + AthLR)(I _ (thLR))
HANPM2) — thLR) + AthL.R) I — (thLR)) v,
hglLLR) + /—lhglLLR)(I _ (thLR))
(31)
f,(ANPMZ) — H(ANPMZ)y 1
(32)

where I is the n X n identity matrix, the 1x n vector

R 1+ AR (1 — (R s the it row of the n x n ANPM2 Hat matrix HANPM2),

Using matrix notation, the ANPM2 estimate of the response is given as:
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(ANPM?2)
hy

(ANPM?2)
= hZ y1

l h(A]\;PMZ)J
n

9 (ANPM2)

y(ANPMZ) — J(ANPM2) y,

(33)

(34)

where thNPMZ) = thLR) + /’lthLR) - hELLR)) is the is the i*" row of the n x n ANPM2 Hat

matrix HANPM2),

2.2. APPLICATION I (SINGLE RESPONSE CHEMICAL PROCESS DATA)

The problem of the study as given in (Pickle ef al., 2008) was to relate chemical yield (y) to
temperature (x;) and time (x,) with the aim to maximize the chemical yield. The data were
obtained using the Central Composite Design (CCD) is given in Table 1

Table 1: Single Response Chemical Process Data generated from the Central Composite Design

(CCD)
L X1 X2 y
1 -1 -1 88.55
2 1 -1 85.80
3 -1 1 86.29
4 1 1 80.44
5 -1.414 0 85.50
6 1.414 0 85.39
7 0 -1.414 86.22
8 0 1.414 85.70
9 0 0 90.21
10 0 0 90.85
11 0 0 91.31
Source: (Pickle ef al., 2008)
2.3. TRANSFORMATION OF DATA FROM Xnew =

CENTRAL COMPOSITE DESIGN (CCD)

In nonparametric regression techniques for
RSM, the values of the explanatory variables
are designed to lie between 0 and 1. The data
collected via a Central Composite Design
(CCD) is transformed by a mathematical
relation:

Min(xo14)—Xo
(Min(xo10)-Max(x014))

(35)

where x,,.,, IS the transformed value, x, is the
target value that needed to be transformed in
the vector containing the old coded value,
represented as Xolds Min (x,;4)
and Max(x,;;) are the minimum and
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maximum values in the vector
Xo1q TeSpectively, (Myers et al., 2009).

The natural or coded variables in Table 1 are
transformed to explanatory variables in Table
2 using Equation (35)

Target points needed to be transformed for
location 1 under the coded variables are given
below:

Target points xp: —1,—1; Min(xy4): —
1.414 ,—1.414; Max(x,): 1.414,1.414

B Min(xp1q) — Xo
(Min(x1q) — Max(xo14))

xnew

Explanatory variable x; : xq4

—-1.414 - (1)
T ((—1.414) — (1.414))
= (0.1464
Explanatory variable x, : x1,
—-1.414 - (1)
T ((—1.414) — (1.414))
= 0.1464

Target points needed to be transformed for
location 2 under the coded variables are given
below:

Target points xy:1,—1; Min(xy4): —
1.414 ,—1.414; Max(x,4): 1.414,1.414

Min(x,14) — %o
(Min(xo1a) — Max(xo1a))

xnew -

Explanatory variable x; : xyq

—-1.414 - (1)
T ((—1.414) — (1.414))
= 0.8536
Explanatory variable x, : x5,
—-1.414 - (1)
T ((—1.414) — (1.414))
= 0.1464

Repeating the process up to location 11, then
we obtain the entries for explanatory
variables x; and x, respectively in Table 2.

Table 2: The transformed single response chemical process data

L X1 X2 Yy
1 0.1464 0.1464 88.55
2 0.8536 0.1464 85.80
3 0.1464 0.8536 86.29
4 0.8536 0.8536 80.44
5 0.0000 0.5000 85.50
6 1.0000 0.5000 85.39
7 0.5000 0.0000 86.22
8 0.5000 1.0000 85.70
9 0.5000 0.5000 90.21
10 0.5000 0.5000 90.85
11 0.5000 0.5000 91.31

Source: (Myers et al., 2009)
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3. RESULTS 1

In single response chemical process data as given in section 3.1, we seek to show the performance

of ANPM2p,p over OLS, MRR1p,45 and MRR2p,45 based on the goodness-of-fit statistics and
the process requirements.

The fixed mixing parameters for the models ANPM2p,45, MRR1p,45 and MRR2p 5 as obtained
via genetic algorithm tool in MATLAB 7.10.0.499 (R2010a) are presented in Table 3.

Table 3: Mixing Parameters of different models for Single Response Chemical
Process Data

Response Model A
OLS NOT APPLICABLE
MRR1p 5 0.9588
y MRR2p 5 1.0000
ANPM2p 45 1.0000

Table 4: Comparison of the goodness-of-fit statistics of each method for the Chemical
Process Data

METHOD | b" | DF,yrey| MSE | SSE | R® | RZ, | PRESS | PRESS’| PRESS™

OLS | - | 5.000 |3.160 | 15.818 | 83.880 | 67.770 | 109.517 | 21.903 | 21.9036
0 2 o 0 9 6

MERLoaa [ o |5 1751 | 0377 [ gas | 9164 [ 96158 | 45 6505 | 21002 [y 5355

MRRZpas | | 2.0000 0'2’05 0.6107 99'380 96'§90 132389 | 2121 | 44617

ANPMZasl o [ 0120 [ 0309 [ g2os [ 99400 [ 97000 T 4y 700 120277 T 0

In Table 4, ANPM2p 5 performed better in terms PRESS, PRESS*, PRESS**, R? and
R2, ; statistics, whereas MRR2p,p has the smallest SSE and MSE statistics. “*” represents PAB.

PLOTA

y Residual

nnnnnnn

Figure 1: Residual Plot for Single Response Chemical Process Data

Fupre Journal 9(1), 305 - 320(2025) 314
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Figure 1, is the residual plots for the three models as specified in the KEY for single response
chemical process data. Obviously, MRR2 45 estimated the data better in terms of SSE and MSE.
Whereas, ANPM2p 45 considerably estimated the data in terms of R?, Réd I PRESS, PRESS x

and PRESS =x .

Table 5: Comparison of optimization results for the Chemical Process Data

Approach X, X3 y
OLS 0.4393 0.4361 90.9783
0.0007 0.0018 89.2913
MRR1p,;
0.2605 0.8009 91.5727
MRR2p 5
0.7511 0.5101 92.8390
ANPM2p 45

The proposed model, ANPM2p,5 performs
better than existing models in terms of
maximum chemical yield for single response
chemical process data as given in Table 5.
Obviously, ANPM2p,; has a better
experimental relationship between
temperature (x;) and time (x,) as it relates to
chemical yield.

3.1 APPLICATION II (MULTI-
RESPONSE CHEMICAL PROCESS DATA)

This problem is analyzed in (He et al,
(2012)). The aim of the study is to get the
setting of the explanatory variables x; and x,
(representing reaction time and temperature,
respectively) that would simultaneously
optimize three quality measures of a
chemical solution y,, y, and y5 (representing

yield, viscosity, and molecular weight,
respectively). The process requirements for
each response are as follows:

Maximize y, with lower limit L = 78.5, and
target value @ = 80;

y,should take a value in the range L = 62
and U = 68 with @ =65;

Minimize ys;with upper limit U = 3300 and
target value @ = 3100.

Based on the process requirements a Central
Composite Design (CCD) was conducted to
establish the design experiment and observed
responses as presented in Table 6.

Fupre Journal 9(1), 305 - 320(2025)
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Table 6: Designed experiment and response values for the multi-response chemical process data

; Experimental variables Responses
X1 X2 Y1 Y2 Y3

1 -1 -1 76.5 62 2940
2 1 -1 78.0 66 3680
3 -1 1 77.0 60 3470
4 1 1 79.5 59 3890
5 -1.414 0 75.6 71 3020
6 1.414 0 78.4 68 3360
7 0 -1.414 77.0 57 3150
8 0 1.414 78.5 58 3630
9 0 0 79.9 72 3480
10 0 0 80.3 69 3200
11 0 0 80.0 68 3410
12 0 0 79.7 70 3290
13 0 0 79.8 71 3500

Source: He et al., (2012)

The values of the explanatory variables are transformed by the relation in Equation (41) coded
between 0 and 1 as given in Table 7.

Table 7: The transformed multiple response chemical process data
L X1 X2 Y1 Y2 Y3
0.1464 |0.1464 |76.5 |62 2940
0.8536 | 0.1464 | 78.0 |66 3680
0.1464 |0.8536 | 77.0 |60 3470
0.8536 | 0.8536 | 79.5 |59 3890
0.0000 | 0.5000 |75.6 |71 3020
1.0000 | 0.5000 |78.4 |68 3360
0.5000 |0.0000 |77.0 |57 3150
0.5000 |1.0000 |78.5 |58 3630
9 |0.5000 |0.5000 |79.9 |72 3480
10 | 0.5000 | 0.5000 |80.3 |69 3200
11 | 0.5000 | 0.5000 |[80.0 |68 3410
12 10.5000 | 0.5000 |[79.7 |70 3290
13105000 |0.5000 [79.8 |71 3500

O N[OOI WIN|F-

3.2. RESULTS 2 the performance of ANPM2p 5
over OLS, MRR1p, 5 and MRR2p,p based
on the goodness-of-fit statistics and the
process requirements.

In the multiple response chemical process
data as given in section 3.4, we seek to show

Fupre Journal 9(1), 305 - 320(2025) 316
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The fixed mixing parameters for the models,
ANPMZPAB, MRRlPAB and MRRZPAB? as
obtained via genetic algorithm tool in

MATLAB 7.10.0.499 (R2010a) are presented

in Table 8.

Table 8: Mixing Parameters of different models for Multiple Chemical Process Data

Response Model A
0LS NOT APPLICABLE
MRR1p,5 1.0000
71 MRR2p 5 1.0000
ANPM2p,5 1.0000
OLS NOT APPLICABLE
MRR1p45 0.7085
Y2 MRR2p 5 1.0000
ANPM2p 15 0.9433
OLS NOT APPLICABLE
Y3 MRR1,,5 0.9320
MRR2p 45 1.0000
ANPM2p 45 0.6999

Table 9: Model goodness-o

f-fit statistics for Multiple Chemical Process Data

Response | Model DF | PRESS™*| PRESS | SSE | MSE [R*(%) |R},;(%)
OLS 7.0000 - - 0.4962 10.4962 (98.2733(97.0400
MRR1,,5 |4.0144| 0.0481 0.6687 | 0.2165 [0.0539]99.2469|97.7489
Y1 MRR2p 45 0.0984 0.9548 | 0.2131 |0.0533]99.2600(97.7800
ANPM2p,5 | 4.0121 | 0.0480 0.6675 | 0.2151 |0.0536(99.2515|97.7613
OLS 7.0000 - - 36.224215.1749189.9725(82.8100
MRR1p,5 |4.8751 | 7.5752 |[107.9471 |12.2280 |2.5083]96.6149|91.6676
Y2 MRR2p,5 |4.0000 | 9.7470 | 109.5441 |10.0023 |2.5006|97.2300{91.6900
ANPM2p,5 [ 4.0714 | 47577 | 65.6015 |10.0051 |2.4574(97.2303|91.8365
OLS 7.0000 - - 207870 | 29696 |75.8967 [ 58.6800
Y3 MRR1,,5 |6.5922| 26522 |361000 [79164 |12009 [90.8216 (83.2923
MRR2p,5 |4.0000| 50382 |545270 |[66047 | 16512]92.3400(77.0300
ANPM?2,,5 [ 4.0002 | 23776 |[275910 |65720 | 16429(92.3804|77.1423
In Table 9, ANPM2p 5, outperformed OLS, (y1). For wviscosity (v,), ANPM2p,p
MRR1p,45 and MRR2p 45 in terms of PRESS performed better between than OLS,

and PRESS™ with respect to chemical yield
(y1). Whereas, MRR2p 5 performed better
than other models considered in terms of
SSE, MSE, R? and Rj,; for chemical yield

MRR1p,5 and MRR2p 45 in terms of PRESS,
PRESS**, MSE, R? and Rfldj statistics,
while MRR2p,5 outperformed OLS,
MRR1p,5 and ANPM2p 5in terms of SSE.
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In terms of molecular weight (y3),
ANPM2p 45 outperformed OLS, MRR1p,p
and MRR2p,p with respect to PRESS,

PLOT A PLOT B

PRESS** SSE and R? statistics. MRR1p 5
performed better in terms of MSE and R3, i

& 2 &~

y1RESIDUALS
Yy 2RESIDUALS

Y3 RESIDUALS

6 8
DATA POINT DATA POINT

Figure 2. Plot A: maximize chemical yield; Plot B:

Plot C: minimize molecular weight

ANPM?2p 45 in the overall performance turns
out better in terms of goodness-of-fit
statistics.

Figure 2 is basically the residual plots for
different models as given in the KEY for

6 8
DATA POINT

is a two sided transformation of viscosity;

which the proposed model ANPM2p,45 oOn
the average perform better in terms of
minimum  residual  points,  meaning
ANPM?2p,5 estimated the data better than
other models considered.

Table 10: Model optimal solution based on the Desirability function for multiple chemical

Process Data

Model X1 X2 y1 ¥ ys3 dy d, d; D(%)
OLS (9).444 2.222 28.761 36.482 (3)229.900 2.174 3.505 2.350 31,3800
0.545 | 0.146 | 79.356 | 64.791 | 3196.800 | 0.571 | 0.930 | 0.516
MRR1p5( g s g . 5 ) s ) 64.9758
0.536 | 0.229 | 78.788 | 66.428 | 3193.700 | 0.192 | 0.523 | 0.531
MRRZ2p45 5 0 2 o 0 o s 37.6723
PM2 0.073 | 0.728 | 81.795 | 65.000 | 3002.500 | 1.000 |1.000 |1.000 |100.000
PAB | g 2 6 0 0 0 0 0 0

In Table 10, the proposed model ANPM2p 45
satisfies the choice of process requirements
for a multiple chemical process data. Hence,
the overall desirability with the highest
percentage gives the best production
requirements.

4. DISCUSSION OF RESULTS

In this paper, we have shown a novel blend
between locally adaptive bandwidth that is
driven by local variability in the data and the

adaptive nonparametric regression model for
RSM data.

We have compared results of the adaptive
nonparametric regression model
(ANPM2p,5) with OLS, MRR1p,; and
MRR2p 45 Using the same data sets in section
3.1 to 3.5 The ANPM1p,5 for single
response chemical process data performed
better in terms of goodness-of-fit statistics
and optimization result over OLS, MRR1p4p
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and MRR2p,5. Though, the multi-response
problem, ANPM2p,5 performed better than
OLS, MRR1p,45 and MRR2p 45 With respect
to goodness-of-fit statistics and the process
requirements for the data considered.
Furthermore, the locally adaptive bandwidth
enhanced the performance of MRR1p,p,
MRR2p,5 and ANPM2p,5 in terms of
goodness-of-fit statistics for the two data
types examined.

5. CONCLUSIONS

In addition, the model ANPM2p 45 compared
with  OLS, MRR1p,5 and MRR2p 45
performed satisfactorily in terms of
goodness-of-fit tests. The model
ANPM?2p,5, again on the average
performance did better than existing models
MRR1p 5 and MRR2p,5 in  terms of
goodness-of-fits  statistics and process
requirements.

Evidently, the model ANPM2p,5 appear to
have better performance over the models,
MRR1p, 5 and MRR2p 45 in all the RSM data
considered in this paper. Conclusively, the
adaptive nonparametric regression model
incorporate local linear regression (LLR)
portion and product of the optimal mixing
parameter and, the residuals of the LLR to
provide a second opportunity of fitting part of
the data that were not captured by the LLR
model and while the locally adaptive
bandwidths perform adequate smoothing of
the three datasets by location for kth number
of explanatory variables and as provides a
better estimates for the two datasets utilized
in this paper.
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