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ARTICLE INFO 

 

ABSTRACT 

The modeling stage of response surface methodology (RSM) includes the 

application of regression models to estimate the functional relationship between 

the response and the explanatory variables which demands using data generated 

from an appropriate experimental design. In RSM, the Ordinary Least Squares 

(OLS) is traditionally used to model the data via user-specified low-order 

polynomials. The OLS model tend to underferformed when the homoscedasticity 

assumption is sullied. In the literature, the use of semiparametric regression 

models is the  preferred techniques in RSM, becauce it combines features of 

parametric and nonparametric regression models, unlike the nonparametric 

regression models that are affected by the idiocyncracies of RSM data. In this 

paper, we consider a novel integration (blend) between an existing adaptive 

nonparametric regression model and a locally adaptive bandwidths selector 

generated from the explanatory variables for adequate smoothing of the data.  The 

adaptive nonparametric regression model incorporate local linear regression 

(LLR) portion and product of the optimal mixing parameter and, the  residuals of 

the LLR to provide a second opportunity of fitting part of the data that were not 

captured by the LLR model and while the locally adaptive bandwidths addresses 

the problems associated with dimensionality, sparsity of RSM data and cost 

efficient design. In the application of RSM data, two data type were considered, 

and we observed  that the goodness-of-fits statistics, zero residual plots, and 

optimization  results of  the novel integration (blend) model when compared with 

the OLS, Model Robust Regression 1(MRR1) and Model Robust Regression 2 

(MRR2) considerably performed better. 
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1.  INTRODUCTION 

 

Nair et al. (2014) and Yeniay (2014) defined 

RSM as statistical technique used  by 

engineers and industrial statistician for 

experimental model building, with the 

intention of optimizing the response variables 

which is influenced by several explanatory 

variables. 
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Eguasa and Edionwe (2025)/ FUPRE Journal, 9(1):305-320(2025) 

 

Fupre Journal 9(1), 305 - 320(2025)   306 
 
 
 

RSM is appropriate for optimizing the 

response variable 𝒚 as a function of several 

explanatory variables (𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘) 

which is given as: 

𝑦𝑖 = 𝑓(𝑥𝑖1,  𝑥𝑖2, … , 𝑥𝑖𝑘) + 𝜀𝑖,    𝑖 = 1,2, … , 𝑛 

              

     (1) 

where 𝜀𝑖 is the error term and assumed to be 

normally distributed with mean zero and 

variance 𝝈2. The surface as given in (1) 

characterized by  𝑓(𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘) is 

termed a response surface (Wan and Birch, 

2011). 

 

1.2 Ordinary Least Squares (OLS) 

 

The common  method for estimating the 

parameter vector  is usually based on the 

Method of Ordinary Least Squares (OLS). 

The parameter vector estimates �̂�  is given as: 

�̂�(𝑂𝐿𝑆) =  (𝑿′𝑿)−1𝑿′𝑦     

     (2) 

The estimated responses for the 𝑖𝑡ℎ location 

can be written as : 

�̂�𝑖
(𝑂𝐿𝑆)

= 𝒙𝒊
′�̂�(𝑂𝐿𝑆) =

𝒙𝒊
′(𝑿′𝑿)−1𝑿′𝑦 ,  𝑖 = 1,2, … , 𝑛  

            (3) 

where 𝒙𝒊
′ is the 𝑖𝑡ℎ row of matrix 

𝑿,  𝑿 is a matrix with dimension  𝑛 × (𝑘 +
1). 

𝑯𝒊 =  𝒙𝒊
′(𝑿′𝑿)−1𝑿′ is the 𝑖𝑡ℎ row of the OLS  

“HAT”  matrix of dimension 𝑛 × 𝑛, 𝑯(𝑂𝐿𝑆). 

The estimated response in the 𝑖𝑡ℎ location is 

given as:  

�̂�(𝑂𝐿𝑆) = 𝑯𝑦 .     

           (4) 

where the matrix 𝑯 is given as: 

𝑯 = [

𝑯𝟏

𝑯𝟐

⋮
𝑯𝒏

],    

              

                                (5) 

(Carley, et al., (2004); River (2009)) 

1.3  MODEL ROBUST REGRESSION 1 

(MRR1) 

 

An effective model that addresses the 

drawbacks inherent in both parametric and 

nonparametric regression models is the use of 

semiparametric regression model, Model 

Robust Regression 1 (MRR1).  

The mathematical expression for the MRR1 

as given in Einsporn (1987; 1993)as: 

 �̂�(𝑀𝑅𝑅1) =  𝜆�̂�(𝐿𝐿𝑅) + (1 − 𝜆)�̂�(𝑂𝐿𝑆) 

                    

                                                  (6) 

where the parameter 𝜆 is the mixing 

parameter with an interval [0, 1].  

 

1.4 MODEL ROBUST REGRESSION 2 

(MRR2)  

Model Robust Regression 2 (MRR2)  

combines estimates of parametric regression 

model to the raw data, while the 

nonparametric regression model portion, uses 

the LLR Hat matrix to fit the residuals from 

the estimates of parametric regression model 

through a mixing parameter, 𝜆.  

The MRR2 was developed by Mays et al., 

(2001) and is expressed as:  

 

�̂�(𝑀𝑅𝑅2) =  �̂�(𝑂𝐿𝑆) +  𝜆�̂�(𝐿𝐿𝑅), 

�̂�(𝐿𝐿𝑅) = 𝑯𝒓
(𝐿𝐿𝑅)

𝑟               

                    (7)  

 𝜆 ∈ [0, 1], 𝑟 = 𝑦 − 𝑦𝑂𝐿𝑆 is the vector of 

residuals that represents the structure in the 

data not captured by the user specified 

parametric regression model.  

 

1.5   OPTIMIZATION PHASE IN RSM 

This involves the use of optimization tools 

(e.g. Genetic algorithm) in finding the 

optimal settings of the explanatory variables 

for which the fitted regression model is 

optimized. In RSM, two types of 

optimization problems exist, such as: single 

response optimization problem and multiple 
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response optimization problems. The last 

phase of optimization, is to obtain the overall 

desirability, which is the geometric mean of 

the individual desirability (Pickle, 2006; He 

et al., 2012; Adalarasan and Santhanakumar, 

2015; Eguasa et al., 2022). 

 

1.6 ADAPTIVE NONPARAMETRIC 

REGRESSION MODEL 

 

In order to address this inadequate utilization 

of the flexibility of MRR2, we give the 

existing adaptive nonparametric regression 

model, PM2 for easy reference.  

The mathematical expression of PM2 

estimate, �̂�𝑖
(𝑃𝑀2)

 is defined by 

�̂�𝑖
(𝑃𝑀2)

 = �̂�𝑖
(𝐿𝐿𝑅)

 +  𝜆ℎ𝑖
(𝐿𝐿𝑅)

[(𝑦𝑖 −

�̂�𝑖
(𝐿𝐿𝑅)

)], 𝑖 = 1,2,  … ,  𝑛.       

                                       (8) 

The PM2 is applied in the estimation of the 

unknown function 𝑓 in Equation (1) see 

Eguasa et al. (2019).   

1.7 LOCALLY ADAPTIVE 

BANDWIDTHS SELECTOR 

 

The locally adaptive bandwidths selector 

includes two aspects of  RMS data namely; 

kth number of explanatory variables in the 

study and sparseness of the data as given in 

Eguasa et al. (2022) can be expressed 

mathematically as: 

𝑏𝑖𝑗 = 𝑇1𝑗(
1

2
−

𝑥𝑖𝑗

𝑇2𝑗
)2, 𝑖 = 1,2, … , 𝑛; 𝑗 =

1,2, … , 𝑘.     

                                    (9) 

where the locally adaptive optimal 

bandwidths from Equation (9) is obtained at 

an optimally selected values of 𝑇1𝑗, 𝑇2𝑗, the 

tuning parameters (hereafter referred to as 𝑇1𝑗
∗  

and 𝑇2𝑗
∗ , respectively), 𝑗 = 1,2, … , 𝑘, based 

on the minimization of the 𝑃𝑅𝐸𝑆𝑆∗∗ 

criterion. 

 

2. METHODOLOGY 

 

In spite of the flexibility of nonparametric 

regression methods, they are scantily applied 

in RSM due to the idiocyncracies of RSM 

data namely; curse of dimensionality, 

sparseness of RSM data and cost efficient 

design. In this paper, we consider a new 

integration between an existing adaptive 

nonparametric regression model and a locally 

adaptive bandwidths selector generated from 

the explanatory variables, which is embedded 

in the kernel weight matrix of the adaptive 

nonparametric regression model.  The 

existing nonparametric regression model 

incorporate a portion of LLR estimates and 

product of the optimal mixing parameter and 

the residuals to provide a second opportunity 

of fitting part of the data that were not 

captured by the LLR portion of the model and 

while the locally adaptive bandwidths 

addresses the problems associated with 

dimensionality, sparsity of RSM data and 

small sample size, see (Eguasa et al., 2022). 

 

2.1.  INTEGRATING THE ADAPTIVE 

NONPARAMETRIC REGRESSION 

MODEL AND LOCALLY              

ADAPTIVE BANDWIDTHS 

In order to address the scanty utilization of 

the flexibility of MRR2, we concatinate 

Equations (8) and (9) respectively, a novel 

blend or approach.  

The assumptions of PM2 and locally adaptive 

bandwidths are given below: 

1. 𝒙𝒊𝒋 ∈ [0, 1], is a vector of kth  

explanatory variables at location i, ∀ 𝑖
= 1, 2, … , 𝑛; 𝑗 = 1,2, … , 𝑘. 
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2. The optimal chosen tuning 

parameters 𝑇1𝑗
∗  , 𝑇2𝑗

∗  > 0 in all k 

explanatory variables 

3. The optimal mixing parameter 𝜆 ∈
[0, 1] 

4. The optimal chosen bandwidths 𝑏𝑖𝑗 ∈

(0, ], ∀ 𝑖 = 1, 2, … , 𝑛; 𝑗 = 1,2, … , 𝑘; 
for smoothing the data at location 𝑖 
and k explanatory variables. 

The mathematical expression of PM2 

estimate, �̂�𝑖
(𝑃𝑀2)

 is defined by 

 

�̂�𝑖
(𝑃𝑀2)

 = �̂�𝑖
(𝐿𝐿𝑅)

 +  𝜆ℎ𝑖
(𝐿𝐿𝑅)

[(𝑦𝑖 −

�̂�𝑖
(𝐿𝐿𝑅)

)], 𝑖 = 1,2,  … ,  𝑛.       

         (8) 

𝑏𝑖𝑗 = 𝑇1𝑗(
1

2
−

𝑥𝑖𝑗

𝑇2𝑗
)2, 𝑖 =

1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑘.   

         (9) 

The PM2 is applied in the estimation of the 

unknown function 𝑓 in Equation (1).  As soon 

as the PM2 and 𝑏𝑖𝑗 are combined to fit the 

data, we have a novel blend or approach 

which is now referred to as ANPM2 for easy 

referencing.   

 

Hence, the ANPM2 estimate �̂�𝑖
(𝐴𝑁𝑃𝑀2)

 of the response is given as:  

�̂�𝒊
(𝐴𝑁𝑃𝑀2)

=  𝒙𝒊
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒊𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)𝑾𝒊𝑦 +

𝜆 𝒙𝒊
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒊
∗𝑿(𝐿𝐿𝑅))

−𝟏
𝑿′(𝑳𝑳𝑹)𝑾𝒊

∗ [𝑦 −   𝒙𝒊
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)�̀�𝒊𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)�̀�𝒊𝑦]   

                                                                                                                                       (10) 

where 𝑦 = (𝑦1, … 𝑦𝑛)′, 𝒙𝒊
′(𝐿𝐿𝑅)

= (1 𝑥𝑖1 …𝑥𝑖𝑘) is the 𝑖𝑡ℎ row of the local linear regression model 

matrix, 𝑿(𝐿𝐿𝑅) given as:   

𝑿(𝐿𝐿𝑅) =  [

1 𝑥11 𝑥12 ⋯ 𝑥1𝑘

1 𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

]                                                              

(11)       

 

where the kernel weight matrix is given by 

 𝑾𝒊 =  [

𝑤𝑖1 0 ⋯ 0
0 𝑤𝑖2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑖𝑛

], 𝑖 = 1,    2  ,    .    .    .   , 𝑛 .                                 

(12) 

(Wan and Birch, 2011; Eguasa et al., 2019). 

The kernel function 𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) is a simplified Gaussian kernel for one explanatory variable case, 

given as: 
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𝑤𝑖1 =  𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) = 𝑒

−(
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

2

     

                   (13) 

Otherwise, the kernel function is a product kernel given as: 

𝑤𝑖1 = ∏𝑗=1
𝑘 𝐾 (

𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) ∑ ∏𝑗=1

𝑘 𝐾 (
𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑖𝑗
)𝑛

𝑝=1⁄ , 𝑝 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑘,           

                                                                                                                          (14) 

For 𝑖 = 1 in Equations (10) and (12), and concantinating the existing bandwidths into the 

regression model to obtain a novel adaptive regression model . Thus,  we have: 

�̂�𝟏
(𝐴𝑁𝑃𝑀2)

=  𝒙𝟏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟏𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)𝑾𝟏𝑦 +

𝜆 𝒙𝟏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟏
∗𝑿(𝐿𝐿𝑅))

−𝟏
𝑿′(𝑳𝑳𝑹)𝑾𝟏

∗  [𝑦 −   𝒙𝟏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)�̀�𝟏𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)�̀�𝟏𝑦]          

                                                                                                                        (15) 

𝑾𝟏 = [

𝑤11 0
0
⋮
0

𝑤12

⋮
0

⋯ 0
…
⋱
⋯

0
⋮

𝑤1𝑛

]

(𝑛×𝑛)

                            (16) 

The entries from Equation (16) and the locally adaptive bandwidths of  Eguasa et al. (2022) are 

translated to estimate �̂�1
𝐴𝑁𝑃𝑀2,  

     𝑤11 =
∏𝑗=1

𝑘 𝐾(
𝑥1𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.            

               (17) 

 

𝑤12 =
∏𝑗=1

𝑘 𝐾(
𝑥2𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.                 

                                                                                                  (18) 

       ⋮ 

𝑤1𝑛 =
∏𝑗=1

𝑘 𝐾(
𝑥𝑛𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.      

                                                                                                                     (19)  

To estimate, �̂�2
𝐴𝑁𝑃𝑀2 set 𝑖 = 2 in Equation (10) and (12), we have: 
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�̂�𝟐
(𝐴𝑁𝑃𝑀2)

=  𝒙𝟐
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟐𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)𝑾𝟐𝑦 +

𝜆 𝒙𝟐
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟐
∗𝑿(𝐿𝐿𝑅))

−𝟏
𝑿′(𝑳𝑳𝑹)𝑾𝟐

∗  [𝑦 −   𝒙𝟐
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)�̀�𝟐𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)�̀�𝟐𝑦]   

                                                                                                                                      (20) 

𝑾𝟐 = [

𝑤21 0
0
⋮
0

𝑤22

⋮
0

⋯ 0
…
⋱
⋯

0
⋮

𝑤2𝑛

]

(𝑛×𝑛)

          (21) 

The entries from Equation  (21) and the locally adaptive bandwidths of  Eguasa et al. (2022) are 

translated to estimate �̂�𝟐
𝑨𝑵𝑷𝑴𝟐, 

     𝑤21 =
∏𝑗=1

𝑘 𝐾(
𝑥1𝑗−𝑥2𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥2𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.        

             (22) 

 

𝑤22 =
∏𝑗=1

𝑘 𝐾(
𝑥2𝑗−𝑥2𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥2𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.                 

                                                                                                   (23) 

    

                    𝑤2𝑛 =
∏𝑗=1

𝑘 𝐾(
𝑥𝑛𝑗−𝑥2𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥2𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2, … , 𝑘.     

                                                                                                                                     (24)  

To estimate, �̂�𝑛
𝐴𝑁𝑃𝑀2 set 𝑖 = 𝑛 in Equation (10) and (12), we have: 

�̂�𝒏
(𝐴𝑁𝑃𝑀2)

=  𝒙𝒏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒏𝑿(𝐿𝐿𝑅))
−𝟏

𝑿′(𝐿𝐿𝑅)𝑾𝒏𝑦 +

𝜆 𝒙𝒏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒏
∗ 𝑿(𝐿𝐿𝑅))

−𝟏
𝑿′(𝑳𝑳𝑹)𝑾𝒏

∗  [𝑦 −   𝒙𝒏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)�̀�𝒏𝑿(𝐿𝐿𝑅))
−𝟏

𝑿′(𝐿𝐿𝑅)�̀�𝒏𝑦]  

                                                                                                                                       (25)  

𝑾𝒏 = [

𝑤𝑛1 0
0
⋮
0

𝑤𝑛2

⋮
0

⋯ 0
…
⋱
⋯

0
⋮

𝑤𝑛𝑛

]

(𝑛×𝑛)

            (26) 

The entries from Equation (26) and the locally adaptive bandwidths of  Eguasa et al. (2022) are 

translated to estimate �̂�𝒏
𝑨𝑵𝑷𝑴𝟐, 
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     𝑤𝑛1 =
∏𝑗=1

𝑘 𝐾(
𝑥1𝑗−𝑥𝑛𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥𝑛𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.        

                                                                                                                               (27) 

𝑤𝑛2 =
∏𝑗=1

𝑘 𝐾(
𝑥2𝑗−𝑥𝑛𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥𝑛𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.                 

                                                                                           (28) 

𝑤𝑛𝑛 =
∏𝑗=1

𝑘 𝐾(
𝑥𝑛𝑗−𝑥𝑛𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥𝑛𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.    

                                                                       (29)  

with respective diagonal matrices of kernel weights, 𝑾𝟐,𝑾𝟑, … ,𝑾𝒏  follows pattern from 

Equations (27, 28 and 29). 

Using matrix notation, the ANPM2 can be expressed as: 

�̂�(𝐴𝑁𝑃𝑀2) =

[
 
 
 
 𝒉𝟏

(𝐿𝐿𝑅)
𝑦 +  𝝀𝒉𝟏

(𝐿𝐿𝑅)
(𝑦 − (𝒉𝟏

(𝐿𝐿𝑅)
𝑦)

𝒉𝟐
(𝐿𝐿𝑅)

𝑦 +   𝝀𝒉𝟐
(𝐿𝐿𝑅)

(𝑦 − (𝒉𝟐
(𝐿𝐿𝑅)

𝑦)

⋮

𝒉𝒏
(𝐿𝐿𝑅)

𝑦 +  𝝀𝒉𝒏
(𝐿𝐿𝑅)

(𝑦 − (𝒉𝒏
(𝐿𝐿𝑅)

𝑦)]
 
 
 
 

,            

                                                                                                                    (30) 

�̂�(𝐴𝑁𝑃𝑀2) =

[
 
 
 
 𝒉𝟏

(𝐿𝐿𝑅)
+   𝝀𝒉𝟏

(𝐿𝐿𝑅)
(𝑰 − (𝒉𝟏

(𝐿𝐿𝑅)
)

𝒉𝟐
(𝐿𝐿𝑅)

+   𝝀𝒉𝟐
(𝐿𝐿𝑅)

(𝑰 − (𝒉𝟐
(𝐿𝐿𝑅)

)

⋮

𝒉𝒏
(𝐿𝐿𝑅)

+   𝝀𝒉𝒏
(𝐿𝐿𝑅)

(𝑰 − (𝒉𝒏
(𝐿𝐿𝑅)

)]
 
 
 
 

 y,                  

                                                                                                                      (31)  

�̂�(𝐴𝑁𝑃𝑀2) =  𝑯(𝐴𝑁𝑃𝑀2)𝑦 ,            

             (32) 

where 𝑰 is the 𝑛 × 𝑛 identity matrix, the 1× 𝑛 vector   

𝒉𝒊
(𝐿𝐿𝑅)

+   𝝀𝒉𝒊
(𝐿𝐿𝑅)

(𝑰 − (𝒉𝒊
(𝐿𝐿𝑅)

) is the 𝑖𝑡ℎ row of the 𝑛 × 𝑛 ANPM2 Hat matrix 𝑯(𝐴𝑁𝑃𝑀2). 

Using matrix notation, the ANPM2 estimate of the response is given as: 
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�̂�(𝐴𝑁𝑃𝑀2) =

[
 
 
 
 𝒉𝟏

(𝑨𝑵𝑃𝑀2)

𝒉𝟐
(𝑨𝑵𝑃𝑀2)

⋮

𝒉𝒏
(𝑨𝑵𝑃𝑀2)

]
 
 
 
 

𝑦,              

                                                                                                        (33) 

�̂�(𝐴𝑁𝑃𝑀2) = 𝑯(𝐴𝑁𝑃𝑀2)𝑦,                 

                                                                                             (34) 

where 𝒉𝒊
(𝑨𝑵𝑃𝑀2)

= 𝒉𝒊
(𝐿𝐿𝑅)

+  𝜆𝒉𝒊
(𝐿𝐿𝑅)

(𝑰 − 𝒉𝒊
(𝐿𝐿𝑅)

) is the is the 𝑖𝑡ℎ row of the 𝑛 × 𝑛 ANPM2 Hat 

matrix 𝑯(𝐴𝑁𝑃𝑀2). 

2.2.    APPLICATION I (SINGLE RESPONSE CHEMICAL PROCESS DATA)  

The problem  of the study as given in (Pickle et al., 2008) was to relate chemical yield (y) to 

temperature (𝑥1) and time (𝑥2) with the aim to maximize the chemical yield. The data were 

obtained using the Central Composite Design (CCD) is given in Table 1 

Table 1: Single Response Chemical Process Data generated from the Central Composite Design 

(CCD) 

𝑖    𝑥1     𝑥2    𝑦 

                 1 -1 -1 88.55 

                 2 1 -1 85.80 

                 3 -1 1 86.29 

                 4 1 1 80.44 

                 5 -1.414 0 85.50 

                 6 1.414 0 85.39 

                 7 0 -1.414 86.22 

                 8 0 1.414 85.70 

                 9 0 0 90.21 

                10 0 0 90.85 

                11 0 0 91.31 

Source: (Pickle et al., 2008)  

2.3.  TRANSFORMATION OF DATA FROM 

CENTRAL COMPOSITE DESIGN (CCD) 

In  nonparametric regression techniques for 

RSM, the values of the explanatory variables 

are designed to lie between 0 and 1. The data 

collected via a Central Composite Design 

(CCD) is transformed by a mathematical 

relation: 

 𝑥𝑛𝑒𝑤 =
𝑀𝑖𝑛(𝑥𝑜𝑙𝑑)−𝑥0

(𝑀𝑖𝑛(𝑥𝑜𝑙𝑑)−𝑀𝑎𝑥(𝑥𝑜𝑙𝑑))
  

       (35) 

  

where 𝑥𝑛𝑒𝑤 is the transformed value, 𝑥0 is the 

target value that needed to be transformed in 

the vector containing the old coded value,  

represented as 𝑥𝑜𝑙𝑑, Min (𝑥𝑜𝑙𝑑) 

and 𝑀𝑎𝑥(𝑥𝑜𝑙𝑑) are the minimum and 
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maximum values in the vector 

𝑥𝑜𝑙𝑑  respectively, (Myers et al., 2009). 

 

The natural or coded variables in Table 1 are 

transformed to explanatory variables in Table 

2 using Equation (35)  

Target points needed to be transformed for 

location 1 under the coded variables are given 

below:   

Target points 𝑥0 : − 1 , −1; 𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) : −
1.414 , −1.414;  𝑀𝑎𝑥(𝑥𝑜𝑙𝑑): 1.414, 1.414 

𝑥𝑛𝑒𝑤 =
𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) − 𝑥0

(𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) − 𝑀𝑎𝑥(𝑥𝑜𝑙𝑑))
 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥1 ∶  𝑥11

=
−1.414 − (−1)

((−1.414) − (1.414))
= 0.1464 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥2 ∶  𝑥12

=
−1.414 − (−1)

((−1.414) − (1.414))
= 0.1464 

Target points needed to be transformed for 

location 2 under the coded variables are given 

below: 

Target points 𝑥0: 1 , −1; 𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) : −
1.414 , −1.414;  𝑀𝑎𝑥(𝑥𝑜𝑙𝑑): 1.414, 1.414 

𝑥𝑛𝑒𝑤 =
𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) − 𝑥0

(𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) − 𝑀𝑎𝑥(𝑥𝑜𝑙𝑑))
 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥1 ∶  𝑥21

=
−1.414 − (1)

((−1.414) − (1.414))
= 0.8536 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥2 ∶  𝑥22

=
−1.414 − (−1)

((−1.414) − (1.414))
= 0.1464 

Repeating the process up to location 11, then 

we obtain the entries for explanatory 

variables 𝑥1 and 𝑥2 respectively in Table 2. 

 

Table 2: The transformed single response chemical process data  

 

𝑖    𝑥1     𝑥2    𝑦 

                 1 0.1464 0.1464 88.55 

                 2 0.8536 0.1464 85.80 

                 3 0.1464 0.8536 86.29 

                 4 0.8536 0.8536 80.44 

                 5 0.0000 0.5000 85.50 

                 6 1.0000 0.5000 85.39 

                 7 0.5000 0.0000 86.22 

                 8 0.5000 1.0000 85.70 

                 9 0.5000 0.5000 90.21 

                10 0.5000 0.5000 90.85 

                11 0.5000 0.5000 91.31 

Source: (Myers et al., 2009) 
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3. RESULTS 1 

In single response chemical process data as given in section 3.1, we seek to show the performance 

of  𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 over 𝑂𝐿𝑆,  𝑀𝑅𝑅1𝑃𝐴𝐵 and  𝑀𝑅𝑅2𝑃𝐴𝐵 based on the goodness-of-fit statistics and 

the process requirements. 

The fixed mixing parameters for the models 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵, 𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 as obtained 

via genetic algorithm tool in MATLAB 7.10.0.499 (R2010a) are presented in Table 3.  

                   Table 3: Mixing Parameters of different models for Single Response Chemical 

Process Data 

Response Model 𝝀 

𝑦 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 0.9588 

𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 1.0000 

 

 

Table 4: Comparison of the goodness-of-fit statistics of each method for the Chemical 

Process Data 

METHOD 𝑏∗ 𝐷𝐹𝑒𝑟𝑟𝑜𝑟 𝑀𝑆𝐸 𝑆𝑆𝐸 𝑅2 𝑅𝑎𝑑𝑗
2  𝑃𝑅𝐸𝑆𝑆 𝑃𝑅𝐸𝑆𝑆∗ 𝑃𝑅𝐸𝑆𝑆∗∗ 

    OLS -  5.000 3.160

0 

15.818

2 

83.880

0 

67.770

0 

109.517

9 

21.903

6 

21.9036 

𝑀𝑅𝑅1𝑃𝐴𝐵 
* 2.1751 

0.377

1 
0.8203 

99.164

4 

96.158

4 
45.6825 

21.002

8 
4.5288 

𝑀𝑅𝑅2𝑃𝐴𝐵 
* 2.0000 

0.305

3 
0.6107 

99.380

0 

96.890

0 
43.2389 

21.619

4 
4.4617 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 
* 2.0120 

0.309

4 
0.6225 

99.400

0 

97.000

0 
40.7993 

20.277

6 
4.1006 

 

In Table 4, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 performed better in terms PRESS, 𝑃𝑅𝐸𝑆𝑆∗,  𝑃𝑅𝐸𝑆𝑆∗∗, 𝑅2 and 
𝑅𝑎𝑑𝑗

2  statistics, whereas 𝑀𝑅𝑅2𝑃𝐴𝐵 has the smallest SSE and MSE statistics. “*” represents PAB. 

 

Figure 1: Residual Plot for Single Response Chemical Process Data 
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Figure 1, is the residual plots for the three models as specified in the KEY for single response 

chemical process data. Obviously, 𝑀𝑅𝑅2𝑃𝐴𝐵 estimated the data better in terms of SSE and MSE. 

Whereas, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵considerably estimated the data in terms of 𝑅2, 𝑅𝑎𝑑𝑗
2 , 𝑃𝑅𝐸𝑆𝑆, 𝑃𝑅𝐸𝑆𝑆 ∗

𝑎𝑛𝑑 𝑃𝑅𝐸𝑆𝑆 ∗∗ .  

 

Table 5: Comparison of optimization results for the Chemical Process Data 

Approach 𝑥1 𝑥2 �̂� 

     OLS 0.4393 0.4361 90.9783 

   

𝑀𝑅𝑅1𝑃𝐴𝐵 

0.0007 0.0018 89.2913 

   

𝑀𝑅𝑅2𝑃𝐴𝐵 

0.2605 0.8009 91.5727 

  

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵   

𝟎. 𝟕𝟓𝟏𝟏 𝟎. 𝟓𝟏𝟎𝟏 𝟗𝟐. 𝟖𝟑𝟗𝟎 

 

The proposed model, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 performs 

better than existing models in terms of 

maximum chemical yield for single response 

chemical process data as given in Table 5. 

Obviously, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 has a better 

experimental relationship between 

temperature (𝑥1) and time (𝑥2) as it relates to 

chemical yield. 

 

3.1.    APPLICATION II (MULTI-

RESPONSE CHEMICAL PROCESS DATA) 

This problem is analyzed in (He et al., 

(2012)).  The aim of the study is to get the 

setting of the explanatory variables 𝑥1 and 𝑥2 

(representing reaction time and temperature, 

respectively) that would simultaneously 

optimize three quality measures of a 

chemical solution 𝑦1, 𝑦2 and 𝑦3 (representing 

yield, viscosity, and molecular weight, 

respectively). The process requirements for 

each response are as follows: 

 

Maximize 𝑦1 with lower limit 𝐿 = 78.5, and 

target value ∅ = 80; 

𝑦2should take a value in the range 𝐿 = 62 

and 𝑈 = 68 with  ∅ =65; 

Minimize 𝑦3with upper limit 𝑈 = 3300 and 

target value ∅ = 3100.   

 

Based on the process requirements a Central 

Composite Design (CCD) was conducted to 

establish the design experiment and observed 

responses as presented in Table 6.  
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Table 6: Designed experiment and response values for the multi-response chemical process data 

i 
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

  𝑥1                           𝑥2 

Responses 

        𝑦1                    𝑦2                  𝑦3 

1  -1                       -1          76.5 62 2940 

2   1                       -1          78.0 66 3680 

3  -1                        1          77.0 60 3470 

4   1                        1          79.5 59 3890 

5 -1.414                 0         75.6 71 3020 

6  1.414                 0         78.4 68 3360 

7          0                   -1.414         77.0 57 3150 

8         0                     1.414         78.5 58 3630 

9   0                       0         79.9 72 3480 

10   0                       0   80.3 69 3200 

11   0                       0   80.0 68 3410 

12   0                       0   79.7 70 3290 

13   0                       0   79.8 71 3500 

Source: He et al., (2012) 

The values of the explanatory variables are transformed by the relation in Equation (41) coded 

between 0 and 1 as given in Table 7.   

 

 

Table 7: The transformed multiple response chemical process data 

𝑖 𝑥1 𝑥2 𝑦1 𝑦2 𝑦3 

1 0.1464 0.1464 76.5 62 2940 

2 0.8536 0.1464 78.0 66 3680 

3 0.1464 0.8536 77.0 60 3470 

4 0.8536 0.8536 79.5 59 3890 

5 0.0000 0.5000 75.6 71 3020 

6 1.0000 0.5000 78.4 68 3360 

7 0.5000 0.0000 77.0 57 3150 

8 0.5000 1.0000 78.5 58 3630 

9 0.5000 0.5000 79.9 72 3480 

10 0.5000 0.5000 80.3 69 3200 

11 0.5000 0.5000 80.0 68 3410 

12 0.5000 0.5000 79.7 70 3290 

13 0.5000 0.5000 79.8 71 3500 

 

3.2. RESULTS 2 

In the multiple response chemical process 

data as given in section 3.4, we seek to show 

the performance of 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 

over 𝑂𝐿𝑆,  𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 based 

on the goodness-of-fit statistics and the 

process requirements. 
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The fixed mixing parameters for the models, 

 AN𝑃𝑀2𝑃𝐴𝐵,   𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵, as 

obtained via genetic algorithm tool in 

MATLAB 7.10.0.499 (R2010a) are presented 

in Table 8. 

Table 8: Mixing Parameters of different models for Multiple Chemical Process Data 

Response Model 𝝀 

𝑦1 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 1.0000 

𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 1.0000 

𝑦2 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 0.7085 

𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 0.9433 

𝑦3 
𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 0.9320 
 𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000 
 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 0.6999 

 

Table 9: Model goodness-of-fit statistics for Multiple Chemical Process Data 

Response Model 𝑫𝑭 𝑷𝑹𝑬𝑺𝑺∗∗ 𝑷𝑹𝑬𝑺𝑺 𝑺𝑺𝑬 𝑴𝑺𝑬 𝑹𝟐(%) 𝑹𝑨𝒅𝒋
𝟐 (%) 

𝑦1 

𝑂𝐿𝑆 7.0000 - - 0.4962 0.4962 98.2733 97.0400 

𝑀𝑅𝑅1𝑃𝐴𝐵 4.0144 0.0481 0.6687 0.2165 0.0539 99.2469 97.7489 

𝑀𝑅𝑅2𝑃𝐴𝐵  0.0984 0.9548 0.2131 0.0533 99.2600 97.7800 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 4.0121 0.0480 0.6675 0.2151 0.0536 99.2515 97.7613 

𝑦2 

   𝑂𝐿𝑆 7.0000 - - 36.2242 5.1749 89.9725 82.8100 

𝑀𝑅𝑅1𝑃𝐴𝐵 4.8751 7.5752 107.9471 12.2280 2.5083 96.6149 91.6676 

𝑀𝑅𝑅2𝑃𝐴𝐵 4.0000 9.7470 109.5441 10.0023 2.5006 97.2300 91.6900 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 4.0714 4.7577 65.6015 10.0051 2.4574 97.2303 91.8365 

𝑦3 
𝑂𝐿𝑆 7.0000      -       - 207870   29696 75.8967  58.6800 

𝑀𝑅𝑅1𝑃𝐴𝐵 6.5922 26522 361000 79164  12009 90.8216 83.2923 

 𝑀𝑅𝑅2𝑃𝐴𝐵 4.0000 50382 545270 66047   16512 92.3400 77.0300 

 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 4.0002 23776 275910 65720   16429 92.3804  77.1423 

 

In Table 9, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵, outperformed OLS, 

 𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 in terms of PRESS 

and 𝑃𝑅𝐸𝑆𝑆∗∗ with respect to chemical yield 

(𝑦1). Whereas, 𝑀𝑅𝑅2𝑃𝐴𝐵 performed better 

than other models considered in terms of 

SSE, MSE, 𝑅2 and 𝑅𝐴𝑑𝑗
2  for chemical yield 

(𝑦1). For viscosity (𝑦2), 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 

performed better between than OLS, 

𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 in terms of PRESS, 

PRESS**, MSE,  𝑅2 and 𝑅𝐴𝑑𝑗
2  statistics, 

while 𝑀𝑅𝑅2𝑃𝐴𝐵 outperformed  OLS, 

𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵in terms of SSE. 
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In terms of molecular weight (𝑦3), 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 outperformed OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 

and 𝑀𝑅𝑅2𝑃𝐴𝐵 with respect to PRESS, 

PRESS**, SSE and 𝑅2 statistics. 𝑀𝑅𝑅1𝑃𝐴𝐵  
performed better in terms of 𝑀𝑆𝐸 𝑎𝑛𝑑 𝑅𝐴𝑑𝑗

2  .  

 
Figure 2.  Plot A: maximize chemical yield; Plot B: is a two sided transformation of viscosity;  

    Plot C: minimize molecular weight 

 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 in the overall performance turns 

out better in terms of goodness-of-fit 

statistics.  

Figure 2 is basically the residual plots for 

different models as given in the KEY for 

which the proposed model 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 on 

the average perform better in terms of 

minimum residual points, meaning 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 estimated the data better than 

other models considered. 

 

Table 10: Model optimal solution based on the Desirability function for multiple chemical 

Process Data 

Model 𝒙𝟏 𝒙𝟐 �̂�𝟏 �̂�𝟐 �̂�𝟑 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝑫(%) 

𝑂𝐿𝑆 
0.444

9 

0.222

6 

78.761

6 

66.482

7 

3229.900

0 

0.174

4 

0.505

8 

0.350

4 
31.3800 

𝑀𝑅𝑅1𝑃𝐴𝐵 
0.545

8 

0.146

4 

79.356

8 

64.791

1 

3196.800

0 

0.571

2 

0.930

4 

0.516

2 
64.9758 

𝑀𝑅𝑅2𝑃𝐴𝐵 
0.536

0 

0.229

6 

78.788

0 

66.428

3 

3193.700

0 

0.192

0 

0.523

9 

0.531

4 
37.6723 

𝑃𝑀2𝑃𝐴𝐵 
0.073

6 

0.728

2 

81.795

6 

65.000

0 

3002.500

0 

1.000

0 

1.000

0 

1.000

0 

100.000

0 

 

In Table 10, the proposed model 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 

satisfies the choice of process requirements 

for a multiple chemical process data. Hence, 

the overall desirability with the highest 

percentage gives the best production 

requirements.  

4. DISCUSSION OF RESULTS 

In this paper, we have shown a novel blend 

between locally adaptive bandwidth that is 

driven by local variability in the data and the 

adaptive nonparametric regression model for 

RSM data.  

 

We have compared results of the adaptive 

nonparametric regression model 

(𝐴𝑁𝑃𝑀2𝑃𝐴𝐵) with OLS,  𝑀𝑅𝑅1𝑃𝐴𝐵 and  

𝑀𝑅𝑅2𝑃𝐴𝐵 using the same data sets in section 

3.1 to 3.5. The 𝐴𝑁𝑃𝑀1𝑃𝐴𝐵 for single 

response chemical process data performed 

better in terms of goodness-of-fit statistics 

and optimization result over OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 
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and 𝑀𝑅𝑅2𝑃𝐴𝐵. Though, the multi-response 

problem, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 performed better than 

OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 𝑎𝑛𝑑 𝑀𝑅𝑅2𝑃𝐴𝐵 with respect 

to goodness-of-fit statistics and the process 

requirements for the data considered. 

Furthermore, the locally adaptive bandwidth 

enhanced the performance of 𝑀𝑅𝑅1𝑃𝐴𝐵, 
𝑀𝑅𝑅2𝑃𝐴𝐵  and 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 in terms of 

goodness-of-fit statistics for the two data 

types examined. 

 

 

5. CONCLUSIONS  

In addition, the model 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 compared 

with OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 𝑎𝑛𝑑 𝑀𝑅𝑅2𝑃𝐴𝐵 

performed satisfactorily in terms of 

goodness-of-fit tests. The model 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵, again on the average 

performance did better than existing models 

 𝑀𝑅𝑅1𝑃𝐴𝐵 𝑎𝑛𝑑 𝑀𝑅𝑅2𝑃𝐴𝐵 in terms of 

goodness-of-fits statistics and process 

requirements. 

Evidently, the model 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 appear to 

have better performance over the models, 

𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 in all the RSM data 

considered in this paper. Conclusively, the 

adaptive nonparametric regression model 

incorporate local linear regression (LLR) 

portion and product of the optimal mixing 

parameter and, the  residuals of the LLR to 

provide a second opportunity of fitting part of 

the data that were not captured by the LLR 

model and while the locally adaptive 

bandwidths perform adequate smoothing of 

the three datasets by location for kth number 

of explanatory variables and as provides a 

better estimates for the two datasets utilized 

in this paper. 
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