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ABSTRACT 

The second-grade plays a significant effect on the velocity of fluid knowing that 

it possesses a characteristic of non-Newtonian fluid having the velocity field 

with two derivatives in stress strain tensor relationship. In this study, the 

combined effects of buoyancy forces, velocity index and 

Magnetohydrodynamics (MHD) heat and mass transfer of second-grade 

nanofluid flow over a stretching-porous sheet with chemical reaction is 

considered. The nanofluid being examined in this study is the Copper (Cu) with 

water (H2O) as the base fluid. The partial differential equations governing of 

the flow are non-dimensionalized, transformed using the stream function and 

the similarity variables. Hence, solved numerically using the mid-point 

Richardson extrapolation code in MAPLE 2021 for various values of the 

controlling parameters of the flow. The results are presented in graphs and 

tables. From the study, it is observed that the increase in the buoyancy due to 

temperature parameter (𝑮𝒓𝒕), velocity power index (𝒎) leads to the increase 

in the velocity and temperature of the fluid. Also, the increasing function of the 

second-grade parameter (𝜶) and the stretching-sheet parameter (𝝀) results in 

the increase of the velocity, temperature and mass transfer of the fluid. 

Comparison is made with the existing work in the literature and they are found 

to be in agreement.  
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1. INTRODUCTION 

The study of nanofluids—engineered 

colloidal suspensions of nanoparticles in base 

fluids—has revolutionized thermal 

engineering due to their superior heat transfer 

properties. These fluids are pivotal in 

applications ranging from microelectronics 

cooling to renewable energy systems. 

However, their behavior under multifield 

interactions, such as magnetohydrodynamics 

(MHD), buoyancy-driven flows, and 

chemical reactions, remains a frontier of 

computational fluid dynamics (CFD) 

research. This paper investigates the 

synergistic effects of buoyancy forces, 

velocity power index, MHD, and chemical 

reactions on the heat and mass transfer of a 

second-grade nanofluid over a stretching 
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porous sheet, addressing critical gaps in 

contemporary literature through advanced 

numerical simulations. 

Buoyancy forces arising from density 

gradients due to temperature or concentration 

variations, govern natural convection in 

thermal systems. In nanofluids, these forces 

are amplified by nanoparticle migration, 

influencing boundary layer dynamics. Recent 

studies by Alghamdi et al. (2023) 

demonstrated that dual buoyancy effects 

(thermal and solutes) significantly alter heat 

transfer rates in viscoelastic nanofluids, 

particularly under porous media conditions. 

Similarly, the velocity power index—a 

parameter defining the nonlinearity of 

stretching sheet velocity—modulates flow 

profiles and shear stresses. Abbas et al. 

(2023) highlighted its role in destabilizing 

laminar flows in power-law fluids, 

underscoring the need for adaptive CFD 

models to capture nonlinear velocity 

gradients. Also, Okedoye et al. examined the 

Buoyancy effect on magnetohydrodynamics 

(MHD) nanofluid flow over a porous 

medium in the presence dufour and Ohmic 

heating. In the study, a two-dimensional 

steady laminar boundary layer flow of an 

incompressible nanofluid over a stretching 

sheet. It is revealed from the study that the 

increase in the buoyancy parameter reduces 

the rate of thermal boundary layer thickness 

of the nanofluid under consideration.   

The interplay of MHD heat and mass transfer 

introduces Lorentz forces, which suppress 

turbulence and enhance thermal conductivity. 

MHD’s utility in controlling nanofluid flows 

has been validated in recent works: Khan et 

al. (2023) optimized magnetic field strengths 

to minimize entropy generation in Ag-water 

nanofluids, while Rana et al. (2023) 

integrated radiative heat transfer into MHD 

models for aerospace applications. However, 

the coupling of MHD with second-grade 

nanofluids — a subclass of non-Newtonian 

fluids with memory and elasticity—remains 

underexplored. These fluids exhibit unique 

stress relaxation behaviors, as shown by 

Nayak et al. (2023), who modeled their 

viscoelasticity using fractional derivatives in 

porous media. 

Porous media further complicate transport 

phenomena by introducing Darcy-

Forchheimer drag and interstitial heat 

transfer. Recent advances by Sharma et al. 

(2023) revealed that variable porosity 

gradients amplify nanoparticle deposition, 

reducing permeability. Concurrently, 

chemical reactions in reactive flows alter 

mass transfer rates through species 

consumption/generation. The work of 

Ibrahim and Anwar (2023) on exothermic 

reactions in TiO₂ nanofluids emphasized the 

need for coupled mass-energy equations to 

predict reaction-driven instabilities. 

Despite progress, existing studies often 

isolate these phenomena. For instance, 

Mehmood et al. (2023) studied MHD in 

Newtonian nanofluids without chemical 

reactions, while Chen et al. (2023) analyzed 

porous media effects in isolation. This paper 

bridges these gaps by developing a unified 

CFD model incorporating buoyancy, variable 

velocity indices, MHD, and chemical 

reactions for a second-grade nanofluid. The 

governing equations—nonlinear PDEs for 

momentum, energy, and mass transfer—are 

solved numerically using a spectral 

Chebyshev collocation method, validated 

against benchmark studies. Parameters such 

as the Grashof number (buoyancy), 

Hartmann number (MHD), and Damköhler 

number (chemical reaction) are analyzed to 

quantify their impacts on Nusselt and 

Sherwood numbers. 

Recent works emphasize computational 

advances in nanofluid dynamics. Ali et al. 

(2023) employed machine learning to 

optimize nanoparticle concentrations in 

CuO-water nanofluids under MHD, 

achieving 25% heat transfer enhancement. 

Conversely, Gupta and Kumar (2023) 
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identified limitations in Eulerian-Lagrangian 

models for viscoelastic nanofluids, 

advocating for Eulerian two-phase 

approaches. On porous media, a DNS study 

by Zhang et al. (2023) resolved microscale 

vortices in fibrous matrices, revealing 

anisotropic thermal conductivity. For 

chemical reactions, Patel et al. (2023) 

developed a reduced-order model for 

catalytic nanofluids, emphasizing Arrhenius 

kinetics. These studies collectively 

underscore the demand for high-fidelity, 

multi-physics CFD frameworks, as proposed 

herein. 

The stretching sheet paradigm, widely used 

in polymer processing and metallurgy, 

imposes non-uniform velocity boundary 

conditions that critically influence thermal 

and solute gradients. Recent computational 

studies by Das et al. (2023) demonstrated that 

combining stretching with porous substrates 

amplifies skin friction coefficients by 18–

22% in non-Newtonian nanofluids. 

Furthermore, the inclusion of a velocity 

power index (denoted as n) allows for 

modeling non-linear stretching profiles, 

which are prevalent in industrial coating 

processes. Kumar and Pandey (2023) 

emphasized that higher n values destabilize 

boundary layers, necessitating adaptive 

meshing in CFD solvers to resolve steep 

gradients.   

A pivotal aspect of this work is the 

incorporation of chemical reactions, which 

introduce source/sink terms in the mass 

transfer equation. Homogeneous reactions, 

governed by the Damköhler number (Da), 

interact nonlinearly with nanoparticle 

thermophoresis and Brownian motion. For 

instance, Sheikholeslami et al. (2023) 

reported that exothermic reactions in Al₂O₃-

water nanofluids elevate local temperatures 

by up to 15%, while endothermic reactions 

suppress thermal boundary layer growth. 

These findings underscore the need for 

coupled solvers that simultaneously resolve 

energy and species equations—a gap 

addressed in this study through a robust finite 

volume method (FVM).   

Second-grade nanofluids, characterized by 

their shear-thinning and stress-relaxation 

behaviors, introduce rheological complexity. 

Unlike Newtonian fluids, their stress tensor 

depends on both the rate of deformation and 

its history, modeled via fractional calculus. 

Recent breakthroughs by Siddiqui et al. 

(2023) incorporated Oldroyd-B constitutive 

equations into OpenFOAM, achieving 

remarkable accuracy in predicting 

viscoelastic instabilities. However, their 

work omitted chemical reactions and dual 

buoyancy effects, limitations rectified in the 

present model.   

This study advances CFD methodologies by 

unifying these phenomena into a single 

framework. The governing equations are 

discretized using a hybrid spectral-finite 

difference scheme, optimized for stiff 

systems arising from high Hartmann (Ha) 

and Damköhler (Da) numbers. Parametric 

studies reveal that increasing Ha suppresses 

velocity fluctuations but enhances 

conductive heat transfer, while higher Da 

accelerates mass transfer depletion. These 

insights are vital for designing next-

generation heat exchangers, catalytic 

reactors, and energy storage systems.   

Based on the article titled “impact velocity 

index and significance of nanofluid flow of 

magnetohydrodynmaics (MHD) over a 

stretching-porous sheet with dufour and 

Ohmic heating effect” and from the above-

mentioned literatures, it is important to 

investigate and carry out the combine effect 

of buoyancy forces, velocity Power Index 

and second-grade nanofluid flow on 

magnetohydrodynamics (MHD) heat and 

mass transfer of over a stretching-porous 

sheet with chemical reaction  
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2. MATHEMATICAL ANALYSIS 

Consider a flow of two-dimensional steady 

laminar boundary layer flow of second-grade 

Cu-water nanofluid over a stretching-porous 

sheet. The x-axis is taken along the direction 

of the continuous stretching surface and the 

y-axis is measured normal to the surface of 

the sheet. A uniform transverse magnetic 

field of strength B0 is applied in the direction 

of y-axis. The flow is continuous due to 

stretching of the sheet; Following the 

assumptions of Koriko et al (2017) in Damisa 

and Okedoye (2024) the temperature of the 

horizontal surface with variable thickness is 

of the form 𝑇𝑤 = 𝐴(𝑥 + 𝑏)
1−𝑚

2  where 𝑚 is 

the velocity power index,  𝑏 is the parameter 

relating to the stretching sheet, 𝑇∞is the fluid 

has ambient temperature, also, the 

concentration of the horizontal surface with 

variable thickness is of the form 𝐶𝑤 =

𝐵(𝑥 + 𝑏)
1−𝑚

2 , 𝐶∞ is the fluid has ambient 

concentration. The effect of the second-grade 

nanofluid with the modified natural 

buoyancy model force in Makinde and 

Animasaun (2016) is incorporated into the 

flow formulation. Taking the thermophysical 

properties of the copper-water into 

consideration, we have the dynamic 

viscosity(𝜇𝑛𝑓), effective density (𝜌𝑛𝑓), 

thermal conductivity (𝛼𝑛𝑓) and the heat 

capacity (𝜌𝐶𝑝)𝑛𝑓. It is assumed that the base 

fluid and the nanoparticles are in equilibrium 

and no slip occurs between them. Hence, the 

equation of motion for the two-dimensional 

equation becomes;  

𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑦
= 0                                                                                        (1) 

𝑢
𝑑𝑢

𝑑𝑥
+ 𝑣

𝑑𝑢

𝑑𝑦
= 𝜇𝑛𝑓

𝜕2𝑢

𝜕𝑦2
−
𝛼1
𝜌𝑛𝑓

{
𝑑𝑢

𝑑𝑥

𝜕2𝑢

𝜕𝑦2
+ 𝑢

𝜕3𝑢

𝜕𝑦2𝜕𝑥
−
𝑑𝑢

𝑑𝑦

𝜕2𝑢

𝑑𝑦𝜕𝑥
+ 𝑣

𝜕3𝑢

𝜕𝑦3
} −

𝜎𝛽0
2

𝜌𝑛𝑓
𝑢 −

𝜇𝑛𝑓

𝜌𝑛𝑓

1

𝑘
𝑢

+
𝑔𝛽𝑇
𝜌𝑛𝑓

𝑚 + 1

2
(𝑇 − 𝑇∞)

+
𝑔𝛽𝐶
𝜌𝑛𝑓

𝑚 + 1

2
(𝐶 − 𝐶∞)                                                                      (2) 

𝑢
𝑑𝑇

𝑑𝑥
+ 𝑣

𝑑𝑇

𝑑𝑥
= 𝛼𝑛𝑓

𝜕2𝑇

𝜕𝑦2
−

1

(𝜌𝐶𝑝)𝑛𝑓

𝑑𝑞𝑟
𝑑𝑦

+
𝜇𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓

(
𝑑𝑢

𝑑𝑦
)
2

+
𝐷𝑚𝑘𝑛𝑓

𝐶𝑠𝐶𝑝

𝜕2𝑇

𝜕𝑦2

+
𝜎𝛽0

2

(𝜌𝐶𝑝)𝑛𝑓

𝑢2                         (3) 

𝜌𝑛𝑓 (𝑢
𝑑𝐶

𝑑𝑥
+ 𝑣

𝑑𝐶

𝑑𝑥
)

=
𝐷𝑚𝑘𝑡
𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2
+
𝐷𝑚𝑘𝑛𝑓

𝜏

𝜕2𝑇

𝜕𝑦2

− 𝑘0(𝐶 − 𝐶∞)                                                                       (4) 

where u and v are the velocity component in 

the x and y direction respectively. 𝛽𝑇 is the 

volumetric coefficient of thermal expansion 

of nanofluid, T is the temperature, C  is the 
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concentration of the nanofluid,  C∞  is the 

ambient concentration,  qr is the radiative 

heat flux, mD  is the mass diffusivity, tk  is 

the thermal diffusion ratio sC  is the 

concentration susceptivity, pC  is specific 

heat at constant pressure,   is the 

thermophoretics, B0 is the magnetic field, k  

is the permeability of the porous medium, 0k  

is the chemical reaction and  𝜎 is the 

electrical conductivity. The dynamic 

viscosity of the nanofluid (µ𝑛𝑓), effective 

density of the nanofluid (𝜌𝑛𝑓), thermal 

conductivity of the nanofluid (𝛼𝑛𝑓) and heat 

capacitance of the nanofluid (𝜌𝑐𝑝 )𝑛𝑓 

(Shankar and Eshetu, 2014); 

         

                                      

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠

𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

𝜇𝑛𝑓 =
𝜇𝑓

(1 − ∅)2.5

(𝜌𝑐𝑝)𝑛𝑓 = (𝜌𝑐𝑝)𝑓
((1 − 𝜙) + 𝜙

(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

)

}
 
 
 
 

 
 
 
 

                                              (5) 

The thermal conductivity of nanofluid of a spherical Nanoparticle (Shankar and Eshetu, 2014) is 

given as: 

𝑘𝑛𝑓 = 𝑘𝑓 [
𝑘𝑠 +  2𝑘𝑓 −  2∅(𝑘𝑓 – 𝑘𝑠 )

𝑘𝑠 + 𝑘𝑓 −  ∅(𝑘𝑓 – 𝑘𝑠 )
]                                                (6) 

Where 𝑓 and 𝑠 are the subscript of the quantities in the base fluid and nanoparticles respectively. 

According to the Roseland diffusion approximation Husseini (2013) and Raptis (1998) the 

radiative heat flux 𝑞𝑟 is given by 

 

 
y

T

k
qr




−=



 4

3

4
                                                              (7) 

  Where 𝜎∗ and 𝑘∗ are the Stefan-Boltzmann constant and the Rosseland mean absorption 

coefficient respectively. We assumed that the temperature difference within the flow are 

sufficiently small such that 𝑇4 may be expressed as a linear function of temperature. 

𝑇4 ≈ 4𝑇∞
3𝑇 − 3𝑇∞

4                                                             (8) 
Substituting Equation (8) into Equation (7) and differentiate with respect to y, we have; 

𝑞𝑟 = −
4𝜎∗

3𝑘∗
𝜕(4𝑇∞

3𝑇 − 3𝑇∞
4)

𝜕𝑦
 

= −
4𝜎∗

3𝑘∗
4𝑇∞

3
𝜕𝑇

𝜕𝑦
 

= −
16𝜎∗𝑇∞

3

3𝑘∗
𝜕𝑇

𝜕𝑦
 

𝜕𝑞𝑟
𝜕𝑦

= −
16𝜎∗𝑇∞

3

3𝑘∗
𝜕2𝑇

𝜕𝑦2
                                                                   (9) 

Substituting (9) into (3), we have 
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𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝛼𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

 
𝜕2𝑇

𝜕𝑦2
−

16𝜎∗𝑇∞
3

3𝑘∗(𝜌𝑐𝑝)𝑛𝑓

𝜕2𝑇

𝜕𝑦2
+

𝜇𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

(
𝜕𝑢

𝜕𝑦
)
2

+
𝐷𝑚𝑘𝑛𝑓
𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2
+

𝜎𝛽0
2

(𝜌𝑐𝑝)𝑛𝑓

𝑢2
                         (10) 

The appropriate boundary conditions for the problem are: 

𝑢 = 𝑈𝑊 = 𝑈0(𝑥 + 𝑏)
𝑚, 𝑣 = 0, 𝑇 = 𝑇𝑤(𝑥), 𝐶 = 𝐶𝑤(𝑥)  𝑎𝑡 𝑦 =  𝐴(𝑥 + 𝑏)

1−𝑚

2

         𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 →  𝐶∞  𝑎𝑠 𝑦 →  ∞                                                                                  
         (11)  

Provided that A, B and b are constant, 𝑏 > 0 A and B are the area of emitting body of the 

temperature and concentration equation respectively and 𝑙 is the characteristics length.  

 

2.1.Method of Solution 

We seek a similarity solution using the stream functions similar to Koriko et al (2017) with the 

longitudinal and axial component of the velocity, 𝑢 and 𝑣 define as; 

                        

𝜓 = 𝐹(𝜂)√(
2(𝜗𝑛𝑓𝑈0)

𝑚 + 1
) (𝑥 + 𝑏)

𝑚+1
2

𝜂 = 𝑦√(
𝑚 + 1

2

𝑈0
𝜗𝑛𝑓

) (𝑥 + 𝑏)
𝑚−1
2

𝑇𝑤(𝑥) = 𝐴(𝑥 + 𝑏)
1−𝑚
2

𝐶𝑤(𝑥) = 𝐵(𝑥 + 𝑏)
1−𝑚
2

𝑢 = 𝑈0(𝑥 + 𝑏)
𝑚+1
2 𝑓′(𝜂)

𝑣 = −
𝑚 + 1

2
(√(

2(𝜗𝑛𝑓𝑈0)

𝑚 + 1
) (𝑥 + 𝑏)

𝑚+1
2 )𝑓(𝜂)

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                              (12) 

 

And the similarity variables for energy and species concentration are defined as: 

𝑔(𝜂) =
𝑇 − 𝑇∞

𝑇𝑤(𝑥) − 𝑇∞
, ℎ(𝜂) =

𝐶 − 𝐶∞
𝐶𝑤(𝑥) − 𝐶∞

                                              (13) 

 

Using the stream functions and similarity variables in equation (12) and (13) equations (1), (2), (4) 

and (10), we have 

It is observed from the procedure that the continuity Equation (1) is satisfied! Also, carrying out 

Similar procedures on momentum, energy and chemical species concentration gives the ordinary 

differential equation (ODE) form; 

𝐹′′′(𝜂) + 𝜙1 (𝐹(𝜂)𝐹
′′(𝜂) − (𝐹′(𝜂))

2
−𝑀(

2

𝑚 + 1
)𝐹′(𝜂) +

1

𝜙2
(𝐺𝑟𝑡𝑔(𝜂) + 𝐺𝑟𝑐ℎ(𝜂)))

+ 𝛼1 {2𝐹
′(𝜂)𝐹′′′(𝜂) − (𝐹′′(𝜂))

2
− 𝐹(𝜂)𝐹′𝑣(𝜂)} − (

2

𝑚 + 1
)𝑘1𝐹

′(𝜂) = 0        (14) 
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(1 +
4𝑅

3
)𝑔′′(𝜂)

+ 𝑃𝑟𝜙3
𝑘𝑓

𝑘𝑛𝑓
{𝐹(𝜂)𝑔′(𝜂) − (

1 − 𝑚

𝑚 + 1
)𝐹′(𝜂)𝑔(𝜂) +

𝐸𝑐

𝜙3
(𝐹′′(𝜂))

2

+ (
1

𝑚 + 1
)
𝑀(𝐸𝑐)

𝜙4
(𝐹′(𝜂))

2
+ 𝐷𝑢h′′(𝜂)} = 0                                                  (15) 

h′′(𝜂) + 𝜙2𝑆𝑐 (𝐹(𝜂)ℎ
′(𝜂) − (

1 − 𝑚

𝑚 + 1
)𝐹′(𝜂)h(𝜂)) − 𝑆𝑐𝛾 (

2

𝑚 + 1
)ℎ(𝜂) + 𝑆𝑟𝑔′′(𝜂) = 0(17) 

Since 𝑦 ≠ 0 indicating that the minimum value does not begin at the origin. Hence, non-

dimensionalizing the boundary conditions the start point begins at 𝑦 = 𝐴(𝑥 + 𝑏)
1−𝑚

2  this 

corresponds to 𝜂 = 𝑦√(
𝑚+1

2

𝑈0

𝜗𝑛𝑓
) (𝑥 + 𝑏)

𝑚−1

2 . At the wall, the boundary condition appropriate to 

scale the boundary layer flow can be expressed as;  

𝜂 = 𝐴(𝑥 + 𝑏)
1−𝑚

2 √(
𝑚+1

2

𝑈0

𝜗𝑛𝑓
) (𝑥 + 𝑏)

𝑚−1

2 , 𝜂 = 𝐴(𝑥 + 𝑏)0√(
𝑚+1

2

𝑈0

𝜗𝑛𝑓
) 

 

𝜂 = 𝐴√(
𝑚 + 1

2

𝑈0
𝜗𝑛𝑓

)                                                            (18) 

Let 

𝛼 = 𝐴√(
𝑚 + 1

2

𝑈0
𝜗𝑛𝑓

) 

Hence, at the domain of [𝜆,∞ ] the associated boundary conditions become; 

𝐹(𝜆) = 𝛼 (
1 − 𝑚

𝑚 + 1
) , 𝐹′(𝛼) = 1, 𝑔(𝛼) = 1, ℎ(𝛼) = 1    𝑎𝑡 𝜂 = 𝛼

𝐹′(∞) → 0, 𝑔(∞)  → 0, h(∞) → 0                   𝑎𝑠 𝜂 → ∞
                                (19) 

 

Where  

𝑃𝑟 =
(𝜇𝑐𝑝)𝑓

𝑘𝑓
, 𝐷𝑢 =

𝐷𝑚𝑘𝑓

𝐶𝑠𝐶𝑝

(𝐶𝑤 − 𝐶∞)

(𝑇𝑤 − 𝑇∞)

1

𝜈𝑓
, 𝐸𝑐 =

1

𝑘𝑡

𝑈0
(𝑇𝑤 − 𝑇∞)𝑥2𝑐𝑝𝑓

, 𝑘1 =
𝜈𝑓

𝑏𝑘
,

𝐺𝑟𝑡 =
𝑔𝛽𝑇
𝑈0𝜌𝑓

(𝑇𝑤  − 𝑇∞),  𝐺𝑟𝑐 = 
𝑔𝛽𝑐
𝑈0𝜌𝑛

 (𝐶𝑤 − 𝐶∞) , 𝑅𝑒𝑥 = 
𝑥𝑢𝑤
𝜐𝑓

, 𝑅 =  
4𝜎∗𝑇∞

3

𝑘∗𝑘𝑓𝑘𝑡
, 𝛼0 =

𝛼1
𝜌𝑓
= 𝛼1

𝑆𝑐 =
𝜈𝑛𝑓

𝐷𝑚
, 𝛾 =

𝐶𝑠𝐶𝑝

𝑘𝑡

𝑘0
𝑈0
, 𝑆𝑟 =

𝐷𝑚𝑘𝑡
𝐶𝑠𝐶𝑝

(𝑇𝑤 − 𝑇∞)

(𝐶𝑤 − 𝐶∞)
, 𝐴 = (𝑇𝑤 − 𝑇∞)𝑙, 𝐵 = (𝐶𝑤 − 𝐶∞)𝑙

}
 
 
 

 
 
 

 (20) 

The non-linear system of the ordinary differential equations (14), (15) and (16) with the 

boundary conditions (19) are the functions of 𝜂 depending 𝛼. For the purpose of easy 

computation, it would be required that the domain [𝛼,∞ ] be transformed to the domain [0,∞ ] 
as 𝑓(ℵ) = 𝑓(𝜂 − 𝛼) = 𝐹(𝜂), 𝜃(ℵ) = 𝜃(𝜂 − 𝛼) = 𝑔(𝜂),Φ(ℵ) = Φ(𝜂 − 𝛼) = h(𝜂). Hence, the 

dimensionless non-linear system of the governing equation becomes; 
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𝑓′′′(ℵ) + 𝜙1 (𝑓(ℵ)𝑓
′′(ℵ) − (𝑓(ℵ))

2
−𝑀(

2

𝑚 + 1
)𝑓′(ℵ) +

1

𝜙2
(𝐺𝑟𝑡𝜃(ℵ) + 𝐺𝑟𝑐Φ(ℵ)))

+ 𝛼1 {2𝑓
′(ℵ)𝑓′′′(ℵ) − (𝑓′′(ℵ))

2
− 𝑓(ℵ)𝑓′𝑣(ℵ)} − (

2

𝑚 + 1
)𝑘1𝑓

′(ℵ)

= 0                    (21) 

(1 +
4𝑅

3
) 𝜃′′(ℵ)

+ 𝑃𝑟𝜙3
𝑘𝑓

𝑘𝑛𝑓
{𝑓(ℵ)𝜃′(ℵ) − (

1 −𝑚

𝑚 + 1
)𝑓′(ℵ)𝜃(ℵ) +

𝐸𝑐

𝜙3
(𝑓′′(ℵ))

2

+ (
1

𝑚 + 1
)
𝑀(𝐸𝑐)

𝜙4
(𝑓′(ℵ))

2
+ 𝐷𝑢Φ′′(ℵ)} = 0                                                               (22) 

Φ′′(ℵ) + 𝜙2𝑆𝑐 (𝑓(ℵ)Φ
′(ℵ) − (

1 −𝑚

𝑚 + 1
)𝑓′(ℵ)Φ(ℵ)) − 𝑆𝑐𝛾 (

2

𝑚 + 1
)Φ(ℵ) + 𝑆𝑟𝜃′′(ℵ) = 0        (23) 

Subjected to the boundary conditions in the domain of [0,∞ ]; 

                                
𝑓(ℵ) = 𝜆 (

1 − 𝑚

𝑚 + 1
) , 𝑓′(ℵ) = 1, 𝜃(ℵ) = 1,Φ(ℵ) = 1    𝑎𝑡 ℵ = 0

𝑓′(𝜒) → 0, 𝜃(𝜒)  → 0,Φ(𝜒) → 0                   𝑎𝑠 𝜒 → ∞
                            (24) 

 

Rate of Flow at the wall: Engineering parameters of curiosity in the flow are skin friction 

coefficient fC
 
and Nusselt number xNu  and local Sherwood number xSh  defined respectively as; 

𝐶𝑓 = 
2𝜏𝑤

𝜌𝑓√
𝑚 + 1
2 𝑢𝑤2

, 𝜏𝑤 = −𝜇𝑛𝑓 (
𝜕𝑢

𝜕𝑦
)
𝑦=𝐴(𝑥+𝑏)

1−𝑚
2

 

This implies 

 𝐶𝑓 = −
2𝜇𝑛𝑓𝑥

𝜌𝑓√
𝑚 + 1
2 𝑢𝑤2

(
𝜕𝑢

𝜕𝑦
)
𝑦=𝐴(𝑥+𝑏)

1−𝑚
2

= −
2𝜇𝑛𝑓𝑥

𝜌𝑓√
𝑚 + 1
2 𝑢𝑤2

(
𝜕

𝜕𝑦
(𝑈0(𝑥 + 𝑏)

𝑚+1
2 𝑓′(𝜂)))

𝑦=𝐴(𝑥+𝑏)
1−𝑚
2

 

= −
2𝑓′′(0)

(1 − 𝜙)2.5
                                                                     (25) 

Now  

𝑁𝑢𝑥 = 
(𝑥 + 𝑏)𝑞𝑤

𝑘𝑓(𝑇𝑤(𝑥) − 𝑇∞)√
𝑚 + 1
2

, 𝑞𝑤 = −(𝑘𝑛𝑓 +
16𝜎∗𝑇∞

3

3𝑘∗
)(
𝜕𝑇

𝜕𝑦
)
𝑦=𝐴(𝑥+𝑏)

1−𝑚
2

 

That is 
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𝑁𝑢𝑥 = − 
(𝑥 + 𝑏)𝑘𝑓𝑘𝑇

𝑘𝑓(𝑇𝑤(𝑥) − 𝑇∞)
(1 +

4𝜎∗𝑇∞
3

𝑘∗𝑘𝑓𝑘𝑡
)(

𝜕

𝜕𝑦
((𝑇𝑤(𝑥) − 𝑇∞)𝜃(𝜂)))

𝑦=𝐴(𝑥+𝑏)
1−𝑚
2

= −𝑘𝑇√𝑅𝑒𝑥 (1 +
4𝑅

3
) 𝜃′(0)                                                                                                             (26)

  

  
And  

 

 𝑆ℎ𝑥 = 
(𝑥 + 𝑏)𝐽𝑤

𝐷(𝐶𝑤(𝑥) − 𝐶∞)
, 𝐽𝑤 = −𝐷 (

𝜕𝐶

𝜕𝑦
)
𝑦=𝐴(𝑥+𝑏)

1−𝑚
2

     

Thus 

𝑆ℎ𝑥 = − 
(𝑥 + 𝑏)𝐷

𝐷(𝐶𝑤 − 𝐶∞)
(
𝜕 (𝐶𝑤 − 𝐶∞)Θ(𝜂)

𝜕𝑦
)
𝑦=𝐴(𝑥+𝑏)

1−𝑚
2

= − √𝑅𝑒𝑥Θ
′(0)          (27) 

The above equations (23) – (25) indicates that the skin friction coefficient (surface drag), rate of 

heat transfer at the wall and rate of mass transfer at the wall respectively. 

 

Table 1: Thermo-physical properties of water, copper  

Physical properties Copper 

(𝐶𝑢) 
Base fluid 

(Water) 

𝐶𝑝(𝐽𝐾𝑔
−1𝑘) 385 4179 

𝜌(𝑘𝑔/𝑚3) 8933 997.1 

𝜅(𝑊/𝑚𝐾) 400 0.613 

𝜌𝐶𝑝(𝐽𝑘𝑔
−1𝑘𝑘𝑔/𝑚3) 3439205 4,166,880.9 

 

3. RESULTS AND DISCUSSION 

In this section, we shall consider the results of the formulation. 

Table 2: Comparison of our result with that of Okedoye et al. (2022) 

 Damisa and Okedoye (2024) Current Work 

Parameter 𝒇′′(𝟎) 𝜽′(𝟎) 𝚽′(𝟎) 𝒇′′(𝟎) 𝜽′(𝟎) 𝚽′(𝟎) 

(𝝋)       

0.2  -1.25876 1.60570  -0.97700  -1.00806  1.27932  -0.75188  

0.4 -1.09004 0.92333   -0.42323 -1.02243  0.86121  -0.85587 

0.6  -0.90663 0.57008    0.15164  -0.88095 0.53274  -0.97579 

(𝒌)          

0.5 -1.13538 1.41113 -0.95416 -0.78257 1.17787 -0.68240 

1.0  -1.03823 1.31401  -0.55989  -0.89448 1.37793 -0.68987 

1.5 -0.97038 1.24138 -0.25618   -0.9989 1.57793 -0.69846 

(𝝀)       

0.0 -1.13538 1.14111 -0.95415 -0.74363 1.12064 -0.70604 

1.0 -0.91937 1.13778 -0.54317 -0.61190 0.95060 -0.46201 

2.0 -0.75316 0.93360 -0.22935 -0.50933 0.81283 -0.26028 

(𝑮𝒓𝒕)          

0.0 -0.88734 1.27572 -0.16495 -0.91251 1.59174 -0.69720 
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1.0  -0.57062 0.63473 -0.15316  -0.4960 0.70456 -0.67264 

2.0 -0.28404 0.42670 -0.16375 -0.12713 0.46346 -0.69003 

(𝒎)       

2.0 -0.75316 0.93360 -0.22935 -0.72902 1.10166 -0.67987 

4.0 -0.49663 0.82119 0.37013 -0.64253 1.15777 -0.46413 

6.0 -0.41128 0.88251 0.58766 -0.60285 1.19850 -0.35708 

(𝜸)       

0.0 -0.74933 0.90763 -0.11855 -0.77761 1.13825 -0.57093 

0.2 -0.75199 0.92557 -0.19461 -0.78105 1.16557 -0.64728 

0.4 -0.75424 0.94113 -0.26226 -0.78399 1.18941 -0.71584 

From the result of Table 2, it was observed that our result is in agreement with that 

obtained by Damisa and Okedoye 2024. 

3.1 Discussion 

Fig.2, Fig.11 and Fig.21 depict the Impact of 

volume fraction parameter (𝜑) on the 

velocity field, temperature distribution and 

mass transfer respectively. From Fig.2, it is 

observed that the increase in the volume 

fraction of the nanofluid brings about a slight 

increase in the motion of the fluid. 

Meanwhile, the increase of the volume 

fraction (𝜑) leads to the decrease in the 

temperature distribution at the wall and an 

increase in the temperature distribution away 

from the wall and at the free stream from 

Fig.12. Then a decreasing function in the 

temperature distribution is observed at all 

point when there is an increase in the volume 

fraction (𝜑) from fig.23.   

Fig.3 and Fig.13 shows the impact of the 

porous medium parameter (𝑘) on the velocity 

field and the temperature distribution field 

respectively. It is observed from figures that 

the increasing function of the porous medium 

parameter (𝑘) brings about the decrease in 

the velocity field of the fluid flow at all point 

and an increase in the temperature 

distribution of the fluid at all point. Fig.4 

illustrates the impact of second-grade 

parameter (𝛼) on the velocity field. It is 

observed from the figure that the velocity of 

the fluid increases at all point as the second-

grade parameter increases. Fig.5, Fig.14 and 

Fig.24 represents the impact of velocity 

power index (𝑚) on the velocity field, 

temperature distribution and the mass 

transfer field respectively. It is observed from 

the figures that the increase in the velocity 

power index (𝑚) leads to the increase in the 

velocity field, temperature distribution and 

mass transfer of the fluid under 

consideration. Fig.6, Fig.15 and Fig.26 

depicts the impact of stretching-sheet 

parameter (𝜆) on the velocity field, 

temperature distribution and mass transfer 

respectively. From the figures, it is noticed 

that the increase in the stretching-sheet 

parameter (𝜆) causes the increase in the 

velocity field, temperature distribution and 

the mass transfer of the fluid. Fig.7 and 

Fig.16 shows the impact of magnetic 

parameter (𝑀) on the velocity field and the 

temperature distribution.  From the figures, it 

is seen that the velocity profiles decrease, 

while the temperature profile increases as 

there is an increase in the magnetic parameter 

(𝑀), showing that the presence of the 

magnetic field in a fluid causes the motion of 

the fluid to slow down. But causes a rise in 

the temperature of the fluid.   

Fig.8 and Fig.16 shows the impact of 

Buoyancy due to temperature (𝐺𝑟𝑡) on 

velocity field and temperature distribution 

respectively. From Fig.8, it is observed that 

the increase in the buoyancy due to 

temperature parameter (𝐺𝑟𝑡) leads to the 
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increase in the velocity of the fluid, on the 

other hand, when there is an increase in the 

buoyancy due to temperature parameter 

(𝐺𝑟𝑡), there is an increase away from the wall 

and a decrease at the wall and at the free 

stream. Fig.9 indicates the impact of 

Buoyancy due to concentration (𝐺𝑟𝑐) on the 

velocity field. It is shown from figure that the 

increase in the buoyancy due to concentration 

parameter (𝐺𝑟𝑐) brings about the increase in 

the velocity of the fluid. Fig.10 and Fig.17 

shows the impact of the Eckert number (𝐸𝑐) 
on velocity field and the temperature 

distribution. From both figures, it is noticed 

that the increase in the Eckert number (𝐸𝑐) 
causes an increase in the motion of the fluid 

and the temperature distribution of the fluid. 

Fig.18 indicates the impact of Dufour number  

(𝐷𝑢) on temperature distribution. It is 

observed from the figure that the increase in 

the dufour parameter (𝐷𝑢) leads to the 

increase in the temperature distribution. 

Fig.19 depict the impact of the radiation 

parameter (𝑅) on the temperature 

distribution. The temperature distribution of 

the fluid decreases at the wall, increases away 

from the wall and at the free stream when 

there is an increase in the radiation parameter 
(𝑅). Fig.20 indicates the impact of the Soret 

number parameter (𝑆𝑟) on mass transfer. 

From the figure, the increase Soret number 
(𝑆𝑟), results in the decreases at the wall, 

increases away from the wall and at the free 

stream. Fig.24 symbolizes the impact of 

chemical reaction parameter (𝛾) on mass 

transfer. From the figure, it is noticed that the 

increase in the chemical reaction parameter 

(𝛾) causes a decrease in the mass transfer. 

Table 2 shows the comparison between the 

skin friction coefficient 𝑓′′(0), Nusselt 

number  

𝜃′(0) and the Sherwood number Φ′(0) for 

various values of 𝜑, 𝑘, 𝜆, 𝐺𝑟𝑡,𝑚 𝑎𝑛𝑑 𝛾 of 

Damisa and Okedoye (2024). It is observed 

from the table that the increasing function of 

the volume fraction  

(𝜑) causes a decrease in the skin friction 

coefficient 𝑓′′(0) , decrease in the Nusselt 

number  

𝜃′(0). The increase in the stretching sheet 

parameter (𝜆) brings about the decrease in 

the skin friction coefficient 𝑓′′(0), decrease 

in the Nusselt number 𝜃′(0)  and an increase 

in the Sherwood number (Φ). Also, the 

increase in the buoyancy due to temperature 

𝐺𝑟𝑡 leads to the increase in the skin friction 

coefficient 𝑓′′(0), decrease in the Nusselt 

number 𝜃′(0). The increase in the velocity 

power index (𝑚) yields an increase in the 

skin friction  𝑓′′(0) and an increase in the 

Sherwood number (Φ). Then, the increase in 

the chemical reaction parameter (𝛾) causes a 

decrease in the skin friction coefficient 

𝑓′′(0), an increase in the Nusselt number  

𝜃′(0)  and a decrease in the Sherwood 

number (Φ). All of these results conform 

with the findings in Damisa and Okedoye 

(2024). Table 3 shows the results of Skin 

friction coefficient 𝑓′′(0), Nusselt number 

𝜃′(0) and the Sherwood number Φ′(0) for 

varying values for Buoyancy due to 

concentration parameter (𝐺𝑟𝑐), Radiation 

parameter (𝑅), second grade fluid parameter 

(𝛼), Soret Number (𝑆𝑟) Eckert number 
(𝐸𝑐) and the Magnetic parameter,  (𝑀) when 

𝑃𝑟 = 21.0 𝑎𝑛𝑑 𝑆𝑐 = 0.62. it is observed 

from the table that the increase in the 

buoyancy due to concentration (𝐺𝑟𝑐) leads to 

the increase in the skin friction coefficient 

𝑓′′(0), a decrease in the Nusselt number 

𝜃′(0) and an increase in the Sherwood 

number Φ′(0). Also, there is a decrease in the 

skin friction coefficient 𝑓′′(0) and the 

Nusselt number 𝜃′(0) while an increase in 

the Sherwood number Φ′(0) as a result of 

increase in the radiation parameter (𝑅). On 

the other hand, there is an increase in the skin 

friction coefficient 𝑓′′(0), a decrease in the 

Nusselt number θ′(0) and an increase in the 

Sherwood number Φ′(0) when there is an 

increase function of the second-grade 

parameter (𝛼). The increasing function of the 
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Soret number (𝑆𝑟) results in a decrease in the 

skin friction coefficient 𝑓′′(0), an increase in 

the Nusselt number 𝜃′(0) and a decrease in 

the Sherwood number Φ′(0). The increase in 

the Eckert number (𝐸𝑐) brings about the 

increase in the skin friction coefficient 𝑓′′(0) 

and the Nusselt number 𝜃′(0) while the 

Sherwood number Φ′(0) decreases. Then the 

skin friction coefficient 𝑓′′(0) decreases, the 

Nusselt number 𝜃′(0) increases and the 

Sherwood number Φ′(0) decreases with an 

increase in the Magnetic parameter (𝑀). 

 

Table 3: Results of Skin friction coefficient 𝑓′′(0), Nusselt number 𝜃′(0) and the Sherwood 

number Φ′(0) for varying values for Buoyancy due to concentration parameter(𝐺𝑟𝑐), Radiation 

parameter (𝑅), second grade fluid parameter (𝛼), Soret Number (𝑆𝑟), Eckert number (𝐸𝑐) and the 

Magnetic parameter (𝑀) when 𝑃𝑟 = 21.0 𝑎𝑛𝑑 𝑆𝑐 = 0.62. 

Parameter 

(𝑮𝒓,𝑵𝒃,𝑵𝒕, 𝑺𝒓, 𝑬𝒄) 
𝒇′′(𝟎) 𝜽′(𝟎) 𝚽′(𝟎) 

   

𝑮𝒓𝒄    

0.0 -0.825803 1.26695 -0.68550 

1.0 -0.58937 0.91388 -0.67521 

2.0 -0.36908 0.72137 -0.67499 

𝑹    

6.0 -0.77605 1.92677 -0.75169 

20.0 -0.78514 0.56042 -0.62713 

40.0 -0.78234 0.24168 -0.60000 

𝜶    

0.1 -0.84725 1.26524 -0.68570 

0.3 -0.72902 1.10166 -0.67987 

0.5 -0.64502 0.97327 -0.67632 

𝑺𝒓    

0.1 -0.65979 1.19531 -0.59709 

0.3 -0.66369 1.25136 -0.86813 

0.5 -0.66736 1.31607 -1.16699 

𝑬𝒄    
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0.0 -0.84614 -0.35012 -0.53530 

4.0 -0.78257 1.77875 -0.68240 

8.0 -0.72741 2.40603 -0.79877 

𝑴    

0.0 -0.70277 0.95144 -0.66902 

2.0 -1.17647 3.42046 -0.85177 

4.0 -1.56536 5.20162 -0.99107 

    

Fig. 2: Impact of volume fraction (𝜑) on 

velocity field. 

Fig.3: Impact of Porous Medium parameter 

(𝑘) on velocity Field.  
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Fig.4: Impact of Second-Grade parameter 

(𝛼) on velocity field. 

Fig.5: Impact of velocity power Index (𝑚) 
on velocity field. 

Fig.6: Impact Stretching-sheet parameter 

(𝜆) on velocity Field. Fig.7: Impact of Magnetic parameter (𝑀) on 

velocity field. 
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Fig.8: Impact of Buoyancy due to 

temperature (𝐹𝑠) on velocity field. Fig.9: Impact of Buoyancy due to 

concentration on velocity field. 

 

Fig.10: Impact of Eckert number (𝐸𝑐) on 

velocity field. 

 

Fig.11: Impact of volume fraction on (𝜑) on 

Temperature distribution. 

Fig.12: Impact of porous mdium parameter 

(𝑘) on Temperature distribution. 
Fig. 13:Impact of velocity power index 

parameter (𝑚) on Temperature distribution. 
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Fig.14: Impact of Stretching-sheet 

parameter (𝜆) on Temperature distribution. 

Fig.15: Impact of Magnetic parameter (𝑀) 
on Temperature distribution. 

 

Fig.16: Impact of Buoyancy due to 

temperature (𝐺𝑟𝑡)  on temperature 

distribution.  

 

Fig.17: Impact of Eckert number 

Temperature parameter (𝐸𝑐) on temperature 

distribution. 

Fig.18: Impact of Dufour number (𝐷𝑢) on 

Temperature distribution. 

 

 
Fig.19: Impact of radiation parameter (𝑅) 

on temperature distribution. 
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Fig.20: Impact of Soret number (𝑆𝑟) on 

Mass transfer distribution. 

 

Fig.21: Impact of volume fraction (𝜑) on 

Mass transfer distribution. 

Fig. 22: Impact of velocity power index 

(𝑚) on Mass transfer distribution. 

Fig.23: Impact of Stretching-sheet 

parameter (𝜆) on Mass Transfer 

distribution. 
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Fig.24: Impact of chemical reaction 

parameter (𝛾) on Mass Transfer 

distribution. 

   

 

 

 

4. CONCLUSION 

 “Combine effects of buoyancy forces, 

velocity power index and 

magnetohydridynamics (MHD) heat and 

mass transfer of second-grade nanofluid flow 

over a stretching-porous sheet with chemical 

reaction” is an article that examined the 

impact of various parameter on the fluid 

velocity, temperature, concentration as well 

as the rate of fluid flow and mass transfer. 

From the study, the following conclusions 

were made; 

1. The increase in the buoyancy due to 

temperature leads to the increase in 

the velocity of the fluid, an increase 

away from the wall and a decrease at 

the wall and at the free stream. The 

increase in the buoyancy due to 

concentration brings about the 

increase in the velocity of the fluid. 

2. The increase in the velocity power 

index leads to the increase in the 

velocity field, temperature 

distribution and mass transfer of the 

fluid under consideration. 

3. There is a decreasing function of fluid 

velocity and an increasing function of 

temperature distribution with the 

increasing effect in the magnetic 

parameter.  

4. The velocity of the fluid increases 

with the increasing effects of the 

second-grade parameter and the 

increase in the chemical reaction 

causes a decrease in the mass transfer. 

5. The increasing function of the porous 

medium causes the decrease in the 

velocity of the fluid flow, an increase 

in the temperature distribution of the 

fluid and the increase in the 

stretching-sheet causes the increase in 

the fluid velocity, temperature 

distribution and the mass transfer of 

the fluid. 

6. The increase in the velocity power 

index yields an increase in the skin 

friction and an increase in the 

Sherwood number, the increase in the 

skin friction coefficient, a decrease in 

the Nusselt number and an increase in 

the Sherwood number is caused by 

the increasing function of the second-
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grade parameter (𝛼). Meanwhile, the 

increase in the buoyancy due to 

temperature leads to the increase in 

the skin friction coefficient and a 

decrease in the Nusselt number. 
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Nomenclature  

 
Parameter Definition  Parameter Definition 

𝑬𝒄 Eckert number  𝑨 Area of emitting body of temperature 

𝑮𝒓𝒕 Buoyancy coefficient factor  𝒍 Characteristics length  

𝑺𝑮 Ratio of Nanofluid particle and base fluid   𝑻∞ Ambient temperature 

𝑹𝒅 Thermal radiation parameter  𝑪∞ Ambient concentration 

𝑺𝒄 Schmidt number  𝜂 similarity variable 

𝑫𝟏   𝑃𝑟 Prandtl number 

𝑺𝒓 Soret number  𝛾 Scaled chemical reaction parameter 

𝑩 Area of emitting body of concentration  𝑘1  Porous medium parameter 

𝑻𝒘 wall temperature  𝑀 magnetic parameter 

𝑪𝒘 Wall concentration  𝑆𝑟 Soret number 

𝑫𝒖 Dufour number   𝑆𝑐 Schmidt number 

𝒌𝟏 Porous medium parameter  𝑅𝑑 Radiation parameter 

𝑮𝒓𝒄 Buoyancy coefficient ratio  𝐸𝑐 Eckert number 

𝑹 Thermal radiation parameter  𝐺𝑟𝑡 coefficient respectively 

𝒌𝒏𝒇 Thermal conductivity of Nanofluid  𝜏𝑤 the shear stress at the surface 

   𝑞𝑤 heat flux at the surface 

𝑫𝒎 Mass diffusivity  𝐽𝑤 mass flux at the surface 
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