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ARTICLE INFO 

 

ABSTRACT 

The growing prevalence of diabetes mellitus has intensified the search for effective, 

plant-based therapeutic agents with minimal side effects. Cucumis Sativus 

(commonly known as cucumber) has been recognized for its potential anti-diabetic 

properties, attributed to its rich phytochemical profile. This study aims to optimize 

and simulate the extraction process of anti-diabetic compounds from Cucumis 

Sativus using Response Surface Methodology (RSM), a statistical and 

mathematical tool effective for modeling and analyzing problems where multiple 

variables influence the desired outcome. In the literature, experimental data were 

fitted to a second-order polynomial regression model, and the model's adequacy 

was confirmed through with a high R² value indicating a strong predictive 

reliability. A Central Composite Design (CCD) was employed to systematically 

evaluate the influence of four independent variables; extraction temperature (°C), 

extraction incubation-time (minutes), agitation speed (rpm), and volume of solvent 

(mL) on the yield of bioactive compounds exhibiting 𝜷 − 𝒈𝒍𝒖𝒄𝒐𝒔𝒊𝒅𝒂𝒔𝒆 inhibitory 

activities. The response was fitted to a second-order polynomial model, and model 

adequacy was confirmed by goodness-of-fit statistics and statistically significant 

with minimal residual. The optimization results for Squared - Distance from target 

revealed that moderate extraction temperature (°C), extraction incubation-time 

(minutes), agitation speed (rpm), and volume of solvent (mL), significantly 

enhanced the recovery of anti-diabetic compounds satisfying optimal – process 

requirements for the target values. The predicted optimal conditions were 

validated, showing a strong correlation between the observed and predicted 

values, thereby confirming the model’s reliability. Furthermore, simulation 

studies were conducted to visualize the simulated – optimal target values as the 

misspecification parameter increases from zero to unity showing interactions 

among variables and to assess the process robustness under varying operational 

conditions. This work demonstrates the utility of RSM as a robust tool for 

optimizing and simulating complex extraction processes in natural product 

research. The optimized extraction protocol for Cucumis Sativus can serve as a 

foundation for the development of functional foods or phytopharmaceuticals 

targeting diabetes management. 
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1. INTRODUCTION 

 

Diabetes mellitus is a chronic metabolic 

disorder characterized by elevated blood 

glucose levels due to impaired insulin 

secretion, action, or both. The global 

prevalence of diabetes has risen substantially 

over recent decades and is projected to affect 

over 640 million adults by 2040 

(International Diabetes Federation (IDF), 

2021). Despite the availability of synthetic 

ant-diabetic drugs, their prolonged use is 

often associated with adverse effects such as 

gastrointestinal discomfort, hypoglycemia, 

and drug resistance (Marrelli et al., 2016). 

Consequently, there has been a growing 

interest in identifying and developing natural, 

plant-based compounds with hypoglycemic 

potential, owing to their safety, accessibility, 

and affordability. 

 

Cucumis Sativus, commonly known as 

cucumber, is a member of the Cucurbitaceae 

family and is widely consumed for its 

nutritional and medicinal properties. 

Traditionally, cucumber has been used in 

Ayurvedic and Unani medicine for managing 

various ailments including diabetes (Grover 

et al., 2002). Phytochemical studies have 

revealed that cucumber contains a diverse 

array of bioactive compounds such as 

flavonoids, tannins, phenolic acids, and 

saponins, which exhibit antioxidant, anti-

inflammatory, and ant-diabetic activities 

(Sarkar et al., 2012; Dhanani et al., 2017). In 

particular, these compounds are known to 

inhibit key carbohydrate-hydrolyzing 

enzymes such as α-amylase and α-

glucosidase, which play a central role in 

postprandial hyperglycemia management 

(Ali et al., 2006). 

 

The efficiency of extracting these bioactive 

compounds from plant matrices is highly 

dependent on several process parameters, 

including extraction temperature, solvent 

composition, extraction time, and the solid-

to-liquid ratio. Traditional extraction 

methods often fail to achieve high yields or 

require large quantities of solvent and energy. 

Therefore, optimization of these parameters 

is essential for maximizing extraction 

efficiency while ensuring compound stability 

and activity. 

 

Response Surface Methodology (RSM) is a 

powerful statistical and mathematical tool 

used for modeling and optimizing complex 

processes involving multiple variables and 

their interactions. It reduces the number of 

experimental trials needed and provides a 

predictive model to assess the influence of 

each factor on the response (Myers et al., 

2016). Central Composite Design (CCD), a 

commonly used design in RSM, allows for 

efficient estimation of quadratic response 

surfaces and identification of optimal 

conditions with minimal experimentation 

(Montgomery, 2017). Previous studies have 

successfully employed RSM in the 

optimization of bioactive compound 

extraction from various plants, confirming its 

applicability and reliability in natural product 

research (Rathore et al., 2011; Norshazila et 

al., 2010). 

 

This study aims to optimize and simulate the 

extraction conditions for anti-diabetic 

compounds from Cucumis Sativus using 

RSM. The specific objectives are: (i) to 

evaluate the effect of key extraction variables 

on the yield of enzyme-inhibitory 

compounds, (ii) to develop a predictive 

model using CCD, and (iii) to identify and 

validate the optimal extraction conditions 

through experimental confirmation and 

numerical simulation. The outcomes of this 

study are expected to provide a scientific 
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basis for the development of standardized 

extraction protocols for natural anti-diabetic 

agents from Cucumis Sativus. 

 

Response Surface Methodology (RSM) is 

well-suited for optimizing a response 

variable y based on multiple explanatory 

variables (𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘), and can be 

represented using the following model: 

  

 𝑦𝑖 = 𝑓(𝑥𝑖1,  𝑥𝑖2, … , 𝑥𝑖𝑘) + 𝜀𝑖,    𝑖 =
1,2, … , 𝑛     

  (1) 

 

𝜀𝑖 represents the error term, which is assumed 

to be normally distributed with a mean of 

zero and a variance of σ². The function 

𝑓(𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘) defines the response 

surface that characterizes the relationship 

between the response and the explanatory 

variables (Wan and Birch, 2011). 

 

The true form of the response function f is 

generally unknown and must be 

approximated. In Response Surface 

Methodology (RSM), the objective is to 

establish an estimated functional relationship 

between the response variable y and the set of 

explanatory variables (𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘). 

 

The conventional method for modeling the 

relationship between the kth explanatory 

variable and the ith response relies on the 

assumption that the underlying functional 

form can be adequately described using a 

parametric model. Such a model can be 

beneficial, assuming the user is able to 

correctly identify and specify a suitable 

functional form for the data. 

 

Therefore, the general parametric regression 

model in matrix notation can be written as: 

 𝒚 = 𝑿𝜷 +  𝜺           

                  

(2) 

where 𝒚 is a vector of response, 𝑿 = 𝑿(𝑂𝐿𝑆) 

is the OLS model matrix, 𝜷 is the unknown 

parameter vector and 𝜺 is the vector of error 

term assumed to be normally distributed with 

zero mean and constant variance property.  

 

The common approach for estimating the 

parameter vector in Equation (2) is usually 

based on the Method of OLS. The parameter 

vector estimates �̂�  in (2) is given as: 

 

�̂�(𝑂𝐿𝑆) =  (𝑿′(𝑂𝐿𝑆)𝑿(𝑂𝐿𝑆))
−1

𝑿′(𝑂𝐿𝑆)𝒚,   𝑿 = 𝑿(𝑂𝐿𝑆)       

 (3) 

 

The estimated responses for the 𝑖𝑡ℎ location can be written as: 

 

�̂�𝑖
(𝑂𝐿𝑆)

= 𝒙𝒊
′(𝑂𝐿𝑆)

�̂�(𝑂𝐿𝑆) = 𝒙𝒊
′(𝑂𝐿𝑆)

(𝑿′(𝑂𝐿𝑆)𝑿(𝑂𝐿𝑆))
−1

𝑿′(𝑂𝐿𝑆)𝒚 , 𝑖 = 1,2, … , 𝑛    

 (4) 

where 𝒙𝒊
′(𝑂𝐿𝑆)

is the 𝑖𝑡ℎ row of matrix 𝑿(𝑂𝐿𝑆),   𝑛 × (𝑘 + 1) vector. 

𝑯𝒊
′(𝑂𝐿𝑆)

=  𝒙𝒊
′(𝑂𝐿𝑆)

(𝑿′(𝑂𝐿𝑆)𝑿(𝑂𝐿𝑆))
−1

𝑿′(𝑂𝐿𝑆) is the 𝑖𝑡ℎ row of the OLS  “HAT”  matrix of dimension 

𝑛 × 𝑛, 𝑯(𝑂𝐿𝑆). The estimated response in the 𝑖𝑡ℎ location is given by:  

 

   �̂�(𝑂𝐿𝑆) = 𝑯(𝑂𝐿𝑆)𝒚 .         (5) 

 

where the matrix 𝑯(𝑂𝐿𝑆) is given as: 
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 𝑯(𝑂𝐿𝑆) =

[
 
 
 
 𝑯1

(𝑂𝐿𝑆)

𝑯2
(𝑂𝐿𝑆)

⋮

𝑯𝑛
(𝑂𝐿𝑆)

]
 
 
 
 

,         (6) 

(Carley, et al., (2004); River, (2009)) 

 

1.1.THE QUADRATIC REGRESSION MODEL (QM) 

 

The Quadratic model is given as:      

 

 𝑦𝑖 =  𝛽0 +  𝛽1𝐴 + 𝛽2𝐵 + 𝛽3𝐶 + 𝛽4𝐷 + 𝛽11𝐴
2 + 𝛽22𝐵

2 + 𝛽33𝐶
2 + 𝛽44𝐷

2 + 𝛽12𝐴𝐵 + 𝛽13𝐴𝐶 +
𝛽14𝐴𝐷 + 𝛽23𝐵𝐶 + 𝛽24𝐵𝐷 + 𝛽34𝐶𝐷                          

   (5)   

 

where 𝐴 = 𝑥1 ,  𝐵 = 𝑥2, 𝐶 = 𝑥3 ,  𝐷 = 𝑥4 are the explanatory variables; 𝛽0 is a constant 

coefficient; the varying coefficients 𝛽1,  𝛽2 and 𝛽11, 𝛽22 are the coefficients of linear, quadratic and 

interaction terms respectively (Jamal et al., 2011). 

 

2.  METHODOLOGY 

 

A Central Composite Design allows for the 

building of the second-order regression 

model in a given response that is frequently 

used for process optimization (Sivarao et al., 

2010; Eguasa, 2020). The three types of CCD 

are based on the locations of the factorial and 

star points in the design space namely; 

Circumscribed CCD (CCCD), Faced-

Centered CCD and the Inscribed CCD. 

 

2.1. THE CIRCUMSCRIBED CENTRAL 

COMPOSITE DESIGN 

 

The most common CCD utilized in RSM is 

the circumscribed CCD because it allows for 

the estimation of curvature and the values of 

star points maintain rotatability which in turn 

depends on the factorial point of the design 

(Dutka et al., 2015).  

The circumscribed CCD involves three types 

of trials namely; two levels (2𝑘) full factorial 

designs, 2𝑘  axial (star) points which are 

located at distance 𝛼 = ±√2𝑘4
 from the 

center point and 𝑘𝑐 , kth central points 

(Bezerra et al., 2008).  The Circumscribed 

CCD can express geometrically as:  

 
Figure 1:  Circumscribed CCD (30 points, when k=4) with factorial design points (16 points), axial 

points (8 points)  and with at least kth central point ( 6 points).  

Sources: Peasura (2015) 
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In this study, the CCCD has been utilized 

because it is cost efficient, maintain 

rotatability and accommodates small number 

of experimental runs in the design.  

 

The mathematical expression for the CCCD 

is given as: 

 

𝐶𝐶𝐶𝐷 =
 2𝑘 + 2𝑘 + 𝑘𝑐  

      

     (6)  

 

where 2𝑘 is the factorial portion, 2𝑘 is the 

axial or star points and 𝑘𝑐 is at least kth 

central points utilized in the design. In this 

design 𝑘 = 4 and 𝑘𝑐 = 6 which from 

equation (6) sum up to 30 experimental runs. 

 

 

A second-order linear regression model is 

given as:      

 𝑦𝑖 =  𝛽0 +  ∑ 𝛽𝑗
𝑘
𝑗=1 𝑥𝑖𝑗 + ∑ 𝛽𝑗𝑗𝑥𝑖𝑗

2𝑘
𝑗=1 +

∑ ∑ 𝛽𝑗𝑟
𝑘
𝑟=𝑗+1

𝑘−1
𝑗=1 𝑥𝑖𝑗𝑥𝑖𝑟 + 𝜀𝑖, i=

1,2, … , 𝑛;  𝑟 = 𝑗 + 1, 𝑗 + 2,… , 𝑘       

      

                            

(7)   

where 𝑥𝑖𝑗 ,  𝑥𝑖𝑟 are the explanatory variables; 

𝛽0 is a constant coefficient; the varying 

coefficients 𝛽𝑗 ,  𝛽𝑗𝑗 and 𝛽𝑗𝑟 are the 

coefficients of linear, quadratic and 

interaction terms respectively. 

 

3. APPLICATION 

 

We will evaluate the performance of the 

adaptive 𝐿𝐿𝑅𝐴𝐵 over the  𝑄𝑀, focusing on the 

goodness-of-fit statistics and the optimal 

settings of the explanatory variables that 

maximize the response using the two RSM 

datasets. 

3.1.  SINGLE RESPONSE 

OPTIMIZATION PROBLEM  

 

This paper focuses on optimizing a single 

response, aiming to identify the settings of 

the explanatory variables that will either 

maximize or minimize the fitted response 

(Eguasa et al., 2022). As such, the 

optimization criterion is based on the 

constrained minimization of the estimated 

Squared Distance from Target (SDT), 

defined as: 

             

Minimize      𝑆𝐷�̂� = ( �̂�(𝒙) − 𝑇)2  

                                  

(8) 

           𝑠. 𝑡 𝒙𝜖 𝜑 , 

where 𝜑 is the design space for the study, 𝑇 

denotes the target value set by the researcher,  

�̂�(𝒙) is the estimated response at the settings 

𝒙 of the explanatory variables (Pickle, 

(2006); Najafi et al., (2011); Eguasa et al., 

(2022)). 

 

3.2.  APPLICATION: SINGLE 

RESPONSE EXTRACTION YIELD FOR 

RESPONSE SURFACE      

             PROCESS DATA   

 

The study outlined by Jamal et al. (2011) 

aimed to establish a relationship between 

maximum productivity of 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 

inhibition with process variables such as 

temperature (𝑥1), incubation time (𝑥2), 

agitation speed (𝑥3) and volume of solvent 

(𝑥4) with the goal of maximizing the 

inhibitory activity. Table 1 is the 

experimental range and level of independent 

process variables given below: 
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Table 1. Experimental design range and level of independent process variables (Jamal et al., 

(2011).  

Independent 

Variables 
Symbols 

Levels of Independent Process Variables 

-2 -1 0 +1 +2 

Temperature (℃) 𝑥1 20 25 30 35 40 

Incubation Time (ℎ) 𝑥2 15 20 25 30 35 

Agitation Speed 
(𝑟𝑝𝑚) 

𝑥3 
50 75 100 125 150 

Volume of Solvent 
(𝑚𝑙) 

𝑥4 
5 10 15 20 25 

 

Table 2:  CCD with actual values of factors and  𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibition activity as a response  

                 (Jamal et al., (2011). 

Run 

Independent Variables 

𝑥1 (℃) 𝑥2 (ℎ) 𝑥3 
(𝑟𝑝𝑚) 

𝑥4 
(𝑚𝑙) 

Actual 

Response 

𝑦 

Predicted 

Response 

�̂� 

Predicted 

Response 

𝑄𝑀   �̂� 

Residual 

: 𝑟 = 𝑦 −
�̂� 

1 25 30 75 10 25.57 36.64 34.73 -11.06 

2 35 30 75 10 45.57 30.26 29.03 15.31 

3 25 20 125 10 89.34 108.02 107.88 -18.68 

4 35 20 125 10 96.39 86.97 87.18 9.42 

5 30 35 100 15 14.43 20.83 18.55 -6.40 

6 30 15 100 15 58.36 50.73 51.35 7.63 

7 30 25 100 15 95.74 79.32 78.95 16.42 

8 35 20 75 20 18.95 3.66 4.43 15.29 

9 30 25 100 15 82.13 79.32 78.95 2.81 

10 30 25 100 15 78.98 79.32 78.95 -0.34 

11 35 30 75 20 29.84 30.97 30.28 -1.14 

12 20 25 100 15 91.80 72.30 71.15 19.50 

13 25 30 125 10 54.10 50.81 49.23 3.29 

14 30 25 100 5 49.84 60.25 59.45 -10.41 

15 30 25 150 15 92.13 85.03 84.95 7.10 

16 30 25 100 25 47.87 36.23 36.45 11.64 

17 25 30 125 20 29.84 44.33 42.98 -14.49 

18 25 20 75 20 24.92 54.00 54.13 -29.09 

19 30 25 50 15 30.71 36.58 35.95 -5.87 

20 30 25 100 15 76.62 79.32 78.95 -2.70 

21 35 20 125 20 29.18 37.93 38.93 -8.75 

22 35 30 125 20 19.85 18.63 18.28 1.23 
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23 30 25 100 15 68.52 79.32 78.95 -10.80 

24 40 25 100 15 2.30 20.57 20.75 -18.27 

25 25 30 75 20 70.82 61.66 59.98 9.16 

26 25 20 125 20 86.56 83.29 83.63 3.27 

27 30 25 100 15 73.93 79.32 78.95 -5.39 

28 25 20 75 10 64.59 47.23 46.88 17.36 

29 35 30 125 10 58.69 49.42 48.53 9.27 

30 35 20 75 10 15.88 21.20 21.18 -5.32 

 

Table 3:  CCD with coded variables and  𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibition activity as a response  

Run 

Independent Variables Enzymes Inhibition (%) 

𝑥1 (℃) 𝑥2 (ℎ) 𝑥3 (𝑟𝑝𝑚) 𝑥4 (𝑚𝑙) Actual 

Response 𝑦 

Predicted 

Response �̂� 

Residual : 𝑟 = 𝑦 − �̂� 

1 -1 -1 -1 -1 25.57 36.64 -11.06 

2 1 -1 -1 -1 45.57 30.26 15.31 

3 -1 1 -1 -1 89.34 108.02 -18.68 

4 1 1 -1 -1 96.39 86.97 9.42 

5 -1 -1 1 -1 14.43 20.83 -6.40 

6 1 -1 1 -1 58.36 50.73 7.63 

7 -1 1 1 -1 95.74 79.32 16.42 

8 1 1 1 -1 18.95 3.66 15.29 

9 -1 -1 -1 1 82.13 79.32 2.81 

10 1 -1 -1 1 78.98 79.32 -0.34 

11 -1 1 -1 1 29.84 30.97 -1.14 

12 1 1 -1 1 91.80 72.30 19.50 

13 -1 -1 1 1 54.10 50.81 3.29 

14 1 -1 1 1 49.84 60.25 -10.41 

15 -1 1 1 1 92.13 85.03 7.10 

16 1 1 1 1 47.87 36.23 11.64 

17 -2 0 0 0 29.84 44.33 -14.49 

18 2 0 0 0 24.92 54.00 -29.09 

19 0 -2 0 0 30.71 36.58 -5.87 

20 0 2 0 0 76.62 79.32 -2.70 

21 0 0 -2 0 29.18 37.93 -8.75 

22 0 0 2 0 19.85 18.63 1.23 

23 0 0 0 0 68.52 79.32 -10.80 

24 0 0 0 0 2.30 20.57 -18.27 

25 0 0 0 -2 70.82 61.66 9.16 

26 0 0 0 2 86.56 83.29 3.27 

27 0 0 0 0 73.93 79.32 -5.39 

28 0 0 0 0 64.59 47.23 17.36 

29 0 0 0 0 58.69 49.42 9.27 

30 0 0 0 0 15.88 21.20 -5.32 
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3.3. DATA TRANSFORMATION USING 

CENTRAL COMPOSITE DESIGN (CCD) 

In nonparametric regression methods applied 

to RSM, the explanatory variables are 

typically coded to fall within the interval [0, 

1]. The data obtained through a Central 

Composite Design (CCD) is transformed 

using a mathematical relationship, as 

outlined in Eguasa et al. (2022): 

 𝑥𝑛𝑒𝑤 =
𝑀𝑖𝑛(𝑥𝑜𝑙𝑑)−𝑥0

(𝑀𝑖𝑛(𝑥𝑜𝑙𝑑)−𝑀𝑎𝑥(𝑥𝑜𝑙𝑑))
  

              (9) 

  

the transformed value is denoted as 𝑥𝑛𝑒𝑤, 

while x₀ represents the target value to be 

transformed from the vector of original coded 

values, referred to as 𝑥𝑜𝑙𝑑. The terms 

Min (𝑥𝑜𝑙𝑑) and 𝑀𝑎𝑥(𝑥𝑜𝑙𝑑) indicate the 

minimum and maximum values within the 

𝑥𝑜𝑙𝑑vector, respectively (Eguasa et al., 

2022).  

Table 4:  Transformed CCD to RSM coded variables in the interval of zero and one inclusive.   

Run 

Independent Variables Enzymes Inhibition (%) 

𝑥1 (℃) 𝑥2 (ℎ) 𝑥3 (𝑟𝑝𝑚) 𝑥4 (𝑚𝑙) Actual Response 

𝑦 

Predicted 

Response �̂� 

1 0.2500 0.2500 0.2500 0.2500 25.57 36.64 

2 0.7500 0.2500 0.2500 0.2500 45.57 30.26 

3 0.2500 0.7500 0.2500 0.2500 89.34 108.02 

4 0.7500 0.7500 0.2500 0.2500 96.39 86.97 

5 0.2500 0.2500 0.7500 0.2500 14.43 20.83 

6 0.7500 0.2500 0.7500 0.2500 58.36 50.73 

7 0.2500 0.7500 0.7500 0.2500 95.74 79.32 

8 0.7500 0.7500 0.7500 0.2500 18.95 3.66 

9 0.2500 0.2500 0.2500 0.7500 82.13 79.32 

10 0.7500 0.2500 0.2500 0.7500 78.98 79.32 

11 0.2500 0.7500 0.2500 0.7500 29.84 30.97 

12 0.7500 0.7500 0.2500 0.7500 91.80 72.30 

13 0.2500 0.2500 0.7500 0.7500 54.10 50.81 

14 0.7500 0.2500 0.7500 0.7500 49.84 60.25 

15 0.2500 0.7500 0.7500 0.7500 92.13 85.03 

16 0.7500 0.7500 0.7500 0.7500 47.87 36.23 

17 0.0000 0.5000 0.5000 0.5000 29.84 44.33 

18 1.0000 0.5000 0.5000 0.5000 24.92 54.00 

19 0.5000 0.0000 0.5000 0.5000 30.71 36.58 

20 0.5000 1.0000 0.5000 0.5000 76.62 79.32 

21 0.5000 0.5000 0.0000 0.5000 29.18 37.93 

22 0.5000 0.5000 1.0000 0.5000 19.85 18.63 

23 0.5000 0.5000 0.5000 0.5000 68.52 79.32 

24 0.5000 0.5000 0.5000 0.5000 2.30 20.57 

25 0.5000 0.5000 0.5000 0.0000 70.82 61.66 

26 0.5000 0.5000 0.5000 1.0000 86.56 83.29 

27 0.5000 0.5000 0.5000 0.5000 73.93 79.32 
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28 0.5000 0.5000 0.5000 0.5000 64.59 47.23 

29 0.5000 0.5000 0.5000 0.5000 58.69 49.42 

30 0.5000 0.5000 0.5000 0.5000 15.88 21.20 

 

4.0 DISCUSSION OF RESULTS  

4.1. DESIGN OF EXPERIMENT AND 

STATISTICAL ANALYSIS 
 

The impact of four process variables—

temperature, incubation time, agitation 

speed, and extraction solvent volume was 

assessed to identify the conditions that 

maximize α-glucosidase inhibition. Table 2 

presents the diagnostic case statistics 

comparing the actual experimental responses 

with the predicted values generated by the 

Design Expert software across all 30 

experimental runs. The data were modeled 

using the quadratic polynomial Equation 

(10). 

 

y= −739.45+14.88x1+20.96x2+4.94x3+17.15x4−0.33x12−0.44x22

−0.0074x32−0.31x42+0.20x1x2+0.01x1x3−0.24x1x4−0.093x2x3+0.18x2x4

−0.063x3x4                   (10) 

 

Table 5. The quadratic polynomial Equation for four factors 

SOURCE COEFFICIENTS 

Intercept −739.45 

x₁ +14.88 

x₂ +20.96 

x₃ +4.94 

x₄ +17.15 

x₁² −0.33 

x₂² −0.44 

x₃² −0.0074 

x₄² −0.31 

x₁·x₂ +0.20 

x₁·x₃ +0.01 

x₁·x₄ −0.24 

x₂·x₃ −0.093 

x₂·x₄ +0.18 

x₃·x₄ −0.063 

 

Table 6.   Comparison of the goodness-of-fit statistics for  𝑄𝑀  

Response Model 𝑅2(%) 

𝑦 
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑄𝑀  82.18 

 𝑄𝑀  82.18 
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Table 7:  Comparison of optimization results (process requirement) for the Extraction Process 

Data 

     Approach 𝑥1 (℃) 𝑥2 (ℎ) 𝑥3 (𝑟𝑝𝑚) 𝑥4 (𝑚𝑙) �̂� % 

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑄𝑀 1 25.66 22.30 125 15.6 98.64 

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑄𝑀 2 28.04 20.46 116 13.75 97.36 

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑄𝑀 3 28.10 22.09 119 14.85 94.65 

𝑄𝑀 27.20 15.48 150 6.30 136.55 

From Table 7, provides the extraction yield 

for 𝑄𝑀′𝑠 the four settings of the explanatory 

variables give the desired process 

satisfaction. The QM model provided 

optimal desirability over other existing 

Quadratic models. 

 

4.2.  SIMULATION STUDY 

In this section, we compare the performances 

of the respective regression models, QM 

using data from the optimal responses for QM 

with interactive effects of temperature and 

incubation time, within the misspecification 

parameter  simulated in the range 0.00, 0.25, 

0.50, 0.75, 1.0; where the 𝑥1𝑖,𝑥2𝑖 and 𝑥𝑖𝑗 are 

the explanatory variables.           

  

4. 2.1. SIMULATION STUDY 1 

 

The optimal response of QM, as reported in 

the literature, was used to simulate the 

polynomial model and assess the stability of 

the regression model under the 

misspecification parameter 𝛾, which was 

required to lie within the interval 0 ≤ 𝛾 ≤ 1. 
 

The optimal response is given by: 

 

𝑌𝑖𝑒𝑙𝑑 (%) = 81.97 − 95.07 ∗ x1 + 46.36 ∗
x2 + 48.52 ∗ x1.∗ x2 + 25.11 ∗ x1. ^2 −
96.29 ∗ x2. ^2        (11) 

 

   Table 8. Interaction effect between temperature and incubation time 

SOURCE COEFFICIENTS 

Intercept +81.97 

x₁ -95.09 

x₂ +46.36 

x₁² +25.11 

x₂² −96.29 

x₁·x₂ +48.52 

 

Model 1 Z= 81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-

96.29*x2.^2 

 

+MS*(3*sin(3*pi*x1)-2*cos(2*pi*x2)+2*sin(4*pi*x1.*x2))  

𝑀𝑆 = 𝛾 = 0.0                
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Figure 2: Simulated optimal response (33%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 0.00 

 

Model 2 Z= 81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-

96.29*x2.^2 

+MS*(3*sin(3*pi*x1)-2*cos(2*pi*x2)+2*sin(4*pi*x1.*x2)) 

𝑀𝑆 = 𝛾 = 0.25 
 

 
Figure 3: Simulated optimal response (32%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 0.25 

 

Model 3 Z=81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-

96.29*x2.^2+MS*(3*sin(3*pi*x1)-

2*cos(2*pi*x2)+2*sin(4*pi*x1.*x2))  

𝑀𝑆 = 𝛾 = 0.50 
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Figure 4: Simulated optimal response (31%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 0.50 

 

Model 4  Z=81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-
96.29*x2.^2+MS*(3*sin(3*pi*x1)-

2*cos(2*pi*x2)+2*sin(4*pi*x1.*x2))  

𝑀𝑆 = 𝛾 = 0.75 

 

 
 

Figure 5: Simulated optimal response (31%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 0.75 
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Model 5  Z=81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-

96.29*x2.^2+MS*(3*sin(3*pi*x1)-

2*cos(2*pi*x2)+2*sin(4*pi*x1.*x2))           

𝑀𝑆 = 𝛾 = 1.0 

 
 

Figure 6: Simulated optimal response (31%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 1.00 

 

4.2.2. SUMMARY OF SIMULATION STUDY 1 

 

The estimated optimal percentage of 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory activity from Cucumis Sativus, 

derived using a genetic algorithm, was used to simulate two explanatory variables exhibiting 

positive interactive effects. This approach aimed to assess the stability of the regression model 

under the misspecification parameter 𝛾, constrained within the range 0 ≤ 𝛾 ≤ 1. Notably, as 𝛾 

varies, the 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory activity remains stable, reflecting consistent positive 

interactive effects between temperature and incubation time. 

 

Table 9. Optimal 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibition activity 

Simulation Model 𝛾 Optimal 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibition activity 

(%) 

Model 1 0.00 33 

Model 2 0.25 32 

Model 3 0.50 31 

Model 4 0.75 31 

Model 5 1.00 31 

 

4.3.1. SIMULATION STUDY 2 

 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

20

40

60

80

100

x1: Temperature

Optimal simulation plotfor misspecification parameter: 1.00

x2: Incubation Time

P
er

ce
nt

ag
e 

(%
) I

nh
ib

iti
on

 : 
31

%



Eguasa and Okungbowa (2025)/ FUPRE Journal, 9(1):410-428(2025) 

 

 

Fupre Journal 9(1), 410 - 428(2025)   423 

 
 

The estimated optimal response derived from the genetic algorithm was employed to simulate the 

two explanatory variables, aiming to validate the stability of the regression model under the 

misspecification parameter (mixing parameter) 𝛾, which was constrained to the interval 0 ≤ 𝛾 ≤
1.  
 

Model 1  Z=81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-
96.29*x2.^2+MS*(2*sin(4*pi*x1)+2*cos(4*pi*x2)-2*sin(4*pi*x1*x2))       

𝑀𝑆 = 𝛾 = 0.0 

    

Therefore, the simulated plot gave optimal response of 37% when 𝛾 = 0.0 as given in Figure (7) 

 
Figure 7: Simulated optimal response (37%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 0.00 

 

Model 2  Z=81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-
96.29*x2.^2+MS*(2*sin(4*pi*x1)+2*cos(4*pi*x2)-2*sin(4*pi*x1*x2))          

𝑀𝑆 = 𝛾 = 0.25. 

Therefore, the simulated plot gave optimal response of 37% when 𝛾 = 0.25 as given in Figure (8) 
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Figure 8: Simulated optimal response (37%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 0.25 

 

Model 3  Z=81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-

96.29*x2.^2+MS*(2*sin(4*pi*x1)+2*cos(4*pi*x2)-2*sin(4*pi*x1*x2))          

𝑀𝑆 = 𝛾 = 0.50 

Therefore, the simulated plot gave optimal response of % when 𝛾 = 0.50 as given in Figure (9) 

 

 
Figure 9: Simulated optimal response (38%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 0.50 

 

Model 4  Z=81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-

96.29*x2.^2+MS*(2*sin(4*pi*x1)+2*cos(4*pi*x2)-2*sin(4*pi*x1*x2))          
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𝑀𝑆 = 𝛾 = 0.75 

 

Therefore, the simulated plot gave optimal response of % when 𝛾 = 0.75 as given in Figure (10) 

 
Figure 10: Simulated optimal response (38%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 

                 activity by Cucumis Sativus at 𝛾 = 0.75 

 

Model 5  Z=81.97-95.07*x1+46.36*x2+48.52*x1.*x2+25.11*x1.^2-

96.29*x2.^2+MS*(2*sin(4*pi*x1)+2*cos(4*pi*x2)-2*sin(4*pi*x1*x2))          

𝑀𝑆 = 𝛾 = 1.00 

 

Therefore, the simulated plot gave optimal response of 38% when 𝛾 = 1.00 as given in Figure 

(11) 

 

 
 

Figure 11: Simulated optimal response (38%) for  𝑄𝑀 Percentage 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory 
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                 activity by Cucumis Sativus at 𝛾 = 1.00 

 

 

 

 

4.3.2. SUMMARY OF SIMULATION STUDY 

2 

 

The optimal estimated percentage of 𝛽 −
𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 inhibitory activity from 

Cucumis Sativus, obtained through a genetic 

algorithm, was utilized to simulate two 

explanatory variables with positive 

interactive effects. This method aimed to 

evaluate the stability of the regression model 

under the misspecification parameter 𝛾, 

restricted to the interval 0 ≤ 𝛾 ≤ 1 

Remarkably, the β-glucosidase inhibitory 

activity demonstrated stability across 

variations in 𝛾, indicating consistent positive 

interactions between temperature and 

incubation time.  

 

Table 10. Optimal 𝛽 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 

inhibition activity 

Simulation 

Model 
𝛾 Optimal 𝛽 −

𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑎𝑠𝑒 

inhibition activity 

(%) 

Model 1 0.00 37 

Model 2 0.25 37 

Model 3 0.50 38 

Model 4 0.75 38 

Model 5 1.00 38 

 

5. CONCLUSIONS 

 

The extraction of bioactive compounds with 

anti-diabetic potential from Cucumis Sativus 

(commonly known as cucumber) was 

optimized using Response Surface 

Methodology (RSM). This study focused on 

maximizing β-glucosidase inhibitory activity, 

a key indicator of anti-diabetic efficacy, by 

systematically evaluating the effects of 

critical process parameters, including 

extraction temperature, incubation time, and 

solvent concentration. 

 

A central composite design (CCD) was 

employed to generate a predictive regression 

model, allowing for the analysis of linear, 

quadratic, and interactive effects of the 

independent variables on the response. The 

model demonstrated strong statistical 

significance with a high 𝑅2 = 82.18%, 

indicating good fit and reliability. The 

interactive effects between temperature and 

incubation time were found to be 

significantly positive, enhancing the 

inhibitory activity. 

 

To further refine the optimization and ensure 

robustness of the model under uncertain 

conditions, a genetic algorithm (GA) was 

integrated with the RSM framework. This 

hybrid approach identified the optimal 

extraction conditions (𝑇𝑒𝑚𝑝 = 27.20℃,
𝐼𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
15.48ℎ, 𝐴𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 = 150𝑟𝑝𝑚,
𝑆𝑜𝑙𝑣𝑒𝑛𝑡 = 6.30𝑚𝑙 that yielded the 

maximum β-glucosidase inhibition of �̂� =
136.55. Simulations were conducted under a 

range of values for the misspecification 

parameter γ (0 ≤ γ ≤ 1), testing model 

sensitivity and stability. Results confirmed 

that the inhibitory activity remained stable 

across variations in γ, highlighting the 

resilience of the extraction process and the 

consistency of interactive effects. 

 

Overall, this study demonstrates that 

combining RSM with genetic algorithm-

based simulation provides an effective 

strategy for optimizing and validating the 



Eguasa and Okungbowa (2025)/ FUPRE Journal, 9(1):410-428(2025) 

 

 

Fupre Journal 9(1), 410 - 428(2025)   427 

 
 

extraction of anti-diabetic compounds from 

Cucumis Sativus. The findings offer a 

valuable foundation for the development of 

natural therapeutic agents targeting diabetes 

mellitus. 
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