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ABSTRACT 

Nigeria continues to experience a high security breach with the attendant loss of lives and 

properties worth in billions especially in the North-East as ravaged by insurgency, 

kidnapping and other forms of crime that have overwhelmed law enforcement agencies. 

Technology have been explored to help curb security threats and improve surveillance. This 

study proposes an enhanced human activity recognition system with hybrid deep learning 

fuzzy convolutional neural network. We utilize dynamic agile development mode using the 

python IDE for training and testing the machine learning models. The CNN-Fuzzy model 

was trained with 3,500 dataset extracted from 7 classes of the UCF Crime dataset which was 

further split into 70:30 ratio for training and test purposes. The model after 30 epoch with 

training and validation accuracy of 0.9954 and 0.9954 yielded a prediction accuracy of 

97.14%, Recall of 97.14%, F1-Score of 96.83% and precision of 114.2 outperforming the 

existing system making it an efficient tool for security surveillance to mitigate security 

breaches and generate early warning signals for security agencies. 
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1. INTRODUCTION 

Nigeria continues to witness increased 

insurgence and violent attacks, rapid spree in 

terrorism from its Northern region, has called 

for questions as to their funding (Atuduhor et 

al., 2024; Osegboun and Oladipo, 2023). 

There is also a rise in the facts that children 

are now found to be missing. Missing 

children cases are often classified into 

disappearances, and kidnap/abduction 

(Aghware et al., 2023b, 2023a). Studies have 

reported that over 6,270 teenagers have been 

reported missing, with over 4,620 as teenage 

girls (Akazue, Okofu, et al., 2024; Saminu 

and Mohammed, 2022). The rise in the 

number of missing cases – and in recent 

times, are attributed to feats such as parent’s 

inability to oversee their children (Suleiman, 

2022).  

Kidnapping and abduction violence cum 

crimes can take place anywhere, anytime and 

in any order – from playground, supermarket, 

and even in our very own homes (Aleyomi 

and Olajubu, 2024). New sensor-based IoT 

system can enhance safety and help their 

parents by constantly emitting their 

children’s location via short messaging. 

This system can help their family to 

monitor the children anywhere and 

anytime (Ejeh et al., 2024; Ifioko et al., 

2024). The nature of child monitor utilizes 

technology to ensure considerable 

reliance is on the systems design and 

operation. IoTs have become critical feat 

to monitor and tracks objects’ activity 

in/with real-time processing. Its overlay 

ranges from coverage sensors with 

controllers, wearables and home monitors. 

It yields such capability via its geo-

fencing, state monitor and alerts to 

caretakers (Shoeibi et al., 2022). 

1.1 ICT-Rich Monitor and Alert 

Scenario 

ICT-rich tech have permeated all 

known fields with ground breaking 

innovation that has transformed how we 

live, work and play (Allenotor et al., 2015). 

http://fupre.edu.ng/journal
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Computers play a major role in the 

improvement of the twenty-first century 

society from healthcare to retail, academia, 

security, etc (Malasowe, Aghware, et al., 

2024; Nahavandi et al., 2022). While many 

believe that activity recognition in confined 

settings can yield issue that needs to be 

resolved, also human action detection in 

complex scene still pose numerous 

challenges due to the dynamic shifting 

stances, and backgrounds of people inherent 

in the captured image(s) (Malasowe, Okpako, 

et al., 2024). The birth of artificial 

intelligence assistive technologies and its 

learning imperatives in surveillance/security 

has drastically improved safety. Innovative 

computer vision and image classification 

also has added value to surveillance with 

high level of accuracy and precision. Minor 

inter-class differences poses great challenge 

to image recognition; while, large intra-class 

variations are birthed by factors such as 

extreme occlusion (Muhamada et al., 2024), 

crowded backdrops and scenes, low image 

resolution, target motion fluctuations, and so 

on (Y. Li et al., 2020). In a smart city, action 

recognition is crucial and its accuracy can 

degrade resulting from interference of, or 

complex background. Thus, it is infrequently 

effective in real-world practice/use (Xiong et 

al., 2022). Automating the human physical 

activity (as anomaly) detection has become 

critical to pervasive computing, and in 

human behaviour analysis (Jacob and 

Monachan, 2021). Recognizing captured 

image activities from video sequences is a 

primary function of intelligent surveillance 

system. This growing popularity is due to 

their rising applications in several sectors 

such as surveillance, human fall detection, 

health, and sports analyses. For use in smart 

environment, any questionable behaviour is 

reported to the appropriate authorities (Ejeh 

et al., 2022). Assisted living can facilitate 

constant monitor of patients' action (Oladele 

et al., 2024). Captured image from video 

data-streams entails: (a) to first, learn activity 

representations against known templates, (b) 

label cum classify them against known, 

predefine samples, and (c) test/match them 

with inputted data for classification task 

(Safriandono, Setiadi, Dahlan, Rahmanti, 

et al., 2024). Activity recognition seeks to 

help identify from real-world image-

based records, human activity that are 

therein classified to underpin what actions 

are being expressed (Muslikh et al., 

2023b). It fuses properties to include 

action recognition, intention and narrative 

comprehension. Human activity 

recognition (HAR) is tasked with 

identifying and analysing behaviours and 

environmental interactions, notably 

whole-body and limb movements (Rashid 

et al., 2021). Movements such as walking, 

exercising, and other forms can be quite 

difficult to also predict as it requires large 

volumes of sensor-based, unlabelled data 

captured as images from video footage, 

that are subject to factors such as lighting, 

background noise, and scale variation 

(Akazue, Edje, et al., 2024; Han and 

DeSouza, 2009; Herdiansyah et al., 2024). 

To address these difficulties, there is the 

need for the implementation of an 

enhanced machine learning approach to 

improve on the predictive accuracy of the 

model. 

 

1.2. IoT-Enabled Image Capturing 

Ukadike et al. (2023) explored IoTs 

as a wearable device, integral tracking 

device that enhances safety security of 

individuals. IoTs are a versatile, low-cost 

solution for image capture, tracking and 

monitor with real-time communication 

capabilities (Ukadike et al., 2023). Its 

adaption yields navigation features to 

upscale their safety and confidence. Radio 

Frequency Identification (RFID) emerged 

as veritable solution to ease object track 

with the ability to yield accurate real-time 

data with robust and versatile mean to 

explore techs. Its demerit is with 

interference, and its cost-effectiveness 

(Malasowe, Edim, et al., 2024). RFID tags 

can monitor objects and Akpoyibo et al. 

(2022) developed a pervasive tracker for 

physically challenged persons to cater to 

their diverse user needs (Akpoyibo et al., 
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2022). Binitie et al. (2023) used IoT to 

capture images and showcase RFIDs feats in 

safer transportation feats (Binitie et al., 2021; 

Obruche et al., 2024). 

Need for 24-hour visual surveillance in 

security-prone and high value targets have 

risen due to increased theft and vandalism. A 

majority of today's surveillance systems have 

cameras, and a level of manpower is needed 

to monitor and process the visual data that is 

obtained from the process (Joloudari et al., 

2022).  While this task cannot be delegated 

to human resources alone, there resides the 

risks of detection and scene comprehension 

that require on-the-spot observation over a 

period of extended time (Og and Ying, 2021; 

Okonta et al., 2013, 2014). To this end, 

studies have argued that attention to visual 

surveillance is much beneficial and a 

proactive approach to safety (Upadhyay and 

Sampalli, 2020). Learning algorithms have 

become the next stage in evolution and action 

to aid image recognition as they have steadily 

outperformed conventional methods with the 

exploration of convolution networks’ success 

in computer vision (Jiang et al., 2019). With 

human action recognition (HAR) to detect 

human behavioural changes, it also is used to 

detect abnormalities in captured image scene 

for surveillance with mobility in the temporal 

domain (Mohd Ibrahim et al., 2022). 

Machine learning knows strong, concise 

representation of an action is crucial to action 

recognition as the action’s representation 

also impacts how well the learning scheme 

also perform (Sun et al., 2018). Studies also 

believe that action identification in confined 

spaces, and detection can be quite obscure in 

real-world cases (Hasan et al., 2023) and 

does face numerous challenges due to 

constant changes in human positions, views, 

and backgrounds (C. Li et al., 2019). The 

majority of current research on classifying 

videos is based on deep learning. It delivers 

accurate and timely data of people's activities 

by utilizing sensory data accessible in today's 

sensor-rich environ. Har systems identify 

human activity by finding and localizing 

such activity in the scene over time to 

improve comprehension of the event that is 

happening (Zolfaghari et al., 2018). 

 

Eboka et al. (2025) used a sensor-based 

image capture vision for recognizing 

human activity records and monitors 

human activity using visual sensing of the 

environ vis closed circuit TVs 

strategically installed/deployed under 

surveillance be it on highways, schools, 

banks, industrial and residential areas 

(Eboka et al., 2025). Vision systems 

outperform other strategies in gaining 

societal confidence since they can identify 

activities via captured pixel or recorded 

video sequences (Omede et al., 2024). 

Thus, it extracts data in the environ 

without user-interference or wearable 

units. This makes it readily acceptable 

for/to both scientific and non-scientific 

spaces due to its non-intrusive feat 

(Obasuyi et al., 2024). If the image quality 

that is captured is good, this method will 

function effectively. Image quality can be 

affected by illumination changes, lighting 

circumstances, camera quality, and image 

resolution (Setiadi, Muslikh, et al., 2024). 

Though less expensive to design, it is 

crucial to recall that ambient elements 

such as angle of camera, lighting, and 

individual overlap has greater impact on 

vision-based human activity interaction 

systems (Brizimor et al., 2024; Otorokpo 

et al., 2024). 

Deep learning (DL) a family of 

machine learning models based on neural 

networks with representation learning 

(Setiadi, Nugroho, et al., 2024). Their 

popularity in recognizing human activity 

can be attributed to their use of 

representation learning techniques, which 

can automatically find hidden patterns in 

data and generate optimal features from 

raw input generated from sensors without 

human intervention (Ibor et al., 2023). 

Activity recognition systems often utilize 

classification algorithms to classify 

actions as class labels. Sensor-based HAR, 

like other time series data, begins with 

segmenting data into time frames, which 

are then used to extract time and 
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frequency domain features (Olaniyi et al., 

2023). Traditional machine learning 

algorithms yields manual feature extraction – 

unlike its automatic mode as achieved via 

deep learning, which is useful in extracting 

complicated knowledge from large amounts 

of unsupervised data (Geteloma et al., 2024).  

Okpor et al. (2024) effectively used DL 

to resolve inherent difficulties in image and 

voice recognition stating clearly that DL are 

divided into three (3) form namely generative, 

discriminative, and hybrid (Okpor, Aghware, 

Akazue, Eboka, et al., 2024). Generative 

model learns a train-data real distribution and 

makes changes to yield new samples with the 

same probabilistic distribution as in 

restricted Boltzman machine, deep 

autoencoders, and sparse coding (Kakhi et al., 

2022). The discriminative mode seeks to 

approximate posterior distribution classes to 

directly predict the probability of the output 

given an input, p(y|x). The most widely used 

include convolutional neural networks (CNN) 

and recurrent neural networks (RNN) (Okofu 

et al., 2024). Studies have explored both 

modes to extract more useful predictor 

features. Lastly, the hybrid models seeks to 

fuse or combine both the generative and 

discriminative approaches. With respect to 

human activity recognition system, studies 

have proven that the combined CNN with 

other generative or discriminative models 

have produced more accurate predictions in 

the domain it is deployed (Binitie et al., 

2024). 

CNN (ConvNet) is a well-known design 

for deep learning techniques. It consists of 

several layers utilized for image processing 

and object detection. Proposed by Yann 

LeCun as LeNet in 1988 – its algorithm is 

widely used for image processing to identify 

satellite images, processing medical imaging, 

forecast time series, and detect anomalies. It 

learns internal representations of raw sensor 

data without requiring feature engineering 

expertise (Manickam et al., 2022). Thus, its 

popularity for use in analysis and activity 

recognition. CNN performs convolution on 

sensor data using several hidden layers. CNN 

consists of four layers: convolutional, 

pooling, dense (completely linked), and 

softmax (Kizilkaya et al., 2022). 

Joshi et al. (2020) investigated image 

tracking with activity scheduling system 

that sought to address face-to-face 

monitor using CNN. The system 

integrates wearable device image trackers 

via cloud-based application to yield real-

time location tracker and activity 

scheduling functions. The system offered 

the potentials to enhance parental 

oversight (Joshi et al., 2020). Lu (2022) 

used CNN for face detection to handle 

toddlers' curiosity to explore potentially 

dangerous situations. It monitored 

movements and alerted parents of any 

hazardous objects. Its challenges were in 

optimizing algorithm accuracy and 

minimize false alarm (Lu and Rakovski, 

2022). 

Krishna et al. (2023) deployed CNN 

in smart child tracking with the goal to 

help parent utilize the face detection 

monitor of their children's movements. 

System sought to yield real-time location, 

and enabled parents to receive tracking 

data via SMS (Krishna et al., 2023). Its 

demerit in optimizing sensor performance 

as well as yield reliable transfer of data, 

was resolve via refined design to address 

potential limitations to improve user 

experience and adoption. Okpor et al. 

(2024) advanced works of Lu (2022) 

using CNN with long-short term memory 

learning in vision-based system to 

monitor human activity safety indoors. 

They explore multi-factor authentication 

in the system to monitor imminent 

emergencies, potential dangers (Okpor, 

Aghware, Akazue, Ojugo, et al., 2024). 

 

1.3 Study Motivation and Goal(s) 

With the reviewed literatures, 

available image detection system lacks 

comprehensive fusion of CNN in existing 

technologies; And thus, results in limited 

functionality, which in turn yields 

degraded performance. The study is 

motivated thus (Hennink and Kaiser, 

2022): 
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1. Limited functionality in IoTs without the 

advanced features like real-time monitor 

will generate reliability issues (Aghware, 

Okpor, et al., 2024). 

2. Reliability: Compromised systems due to 

insufficient use of wearable IoTs with its 

inaccurate data recorded cum failure to 

transfer data undermine the effectiveness 

of the system (Ojugo et al., 2023). 

3. Sensor Network Performance: Problem 

to optimize network of sensors to ensure 

reliable communication. Utilization of 

sensors that fuses data acquired via multi-

unit to enhance its tracking accuracy 

(Brizimor et al., 2024; Estes and Streicher, 

2022; Obasuyi et al., 2024). 

4. Optimized Accuracy with Reduced False 

Alarms: Yoro et al. (2022) identified the 

need to optimize accuracy and minimize 

false alarm in toddler tracking. To 

address these requires continuous 

refinement of deep learning algorithms, 

including data augmentation techniques 

and model fine-tuning, to improve 

recognition accuracy and reduce false 

alarms (Yoro, Aghware, Akazue, et al., 

2023). 

 

To overcome these, we implement the 

smart child-tracking system as thus: (a) 

develop comprehensive understanding of 

existing child monitoring and tracking 

techs with regards to their capabilities, 

limitations, and ethics, (b) adopt latest 

trends in IoTs relevant to child 

track/monitor, (c) identify design require-

ments to implement our smart child track-

ing in lieu of accuracy, reliability, and 

user-friendliness, (d) implement a proto-

type tracking system with integrating em-

bedded systems such as controllers, sen-

sors, and communication modules, and (e) 

evaluate its effectiveness and usability 

via real-world test scenarios and user 

feedback (Wemembu et al., 2014). It 

promises revolutionary change in the 

monitor kids with improved user-trust, 

greater functionalities, assured user ac-

ceptance and better reliability. 

 

2.    Materials and Methods 

2.1.  The Experimental Framework 

The proposed method is as in Figure 

1 with its steps explained as thus:

 

 
Figure 1. The Proposed Fuzzy CNN-based Image Recognition Methodology 

 

1. Input Data is retrived via unstructured 

form (Bayer et al., 2023) captued 

image for which, each image is 

extracted from surveillance videos of 

the human action. Dataset is available 

online at [web]: 

kaggle.com/datasets/odins0n/ucf-

crime-dataset (UCF-crime dataset) 

with 1900 videos grouped into: 

accident, burglary, abuse, arson, assault, 

fighting, robbery, shooting, stealing, 

shoplift, vandalism, etc. Dataset 

consists of a total 1,377,653 images 

with 964,357-image recordset for 

training, and test as 413,296-images. 

 

2. Preprocessing: (a) first encodes the 

data from its natural state(s) to an 

appropriate equivalence using the one-

hot encoding technique. It then explores 

INPUT 

DATASET 

HUMAN ACTIVITY 

DETECTION AND 

RECOGNITION  RESULTS 

CNN-FUZZY 

CLASSIFIER 

https://www.kaggle.com/datasets/odins0n/ucf-crime-dataset
https://www.kaggle.com/datasets/odins0n/ucf-crime-dataset
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the DWT to use its bi-orthogonal filters, 

based on wavelet decomposition mode 

to denoise the image dataset. The filter 

splits all the image data into smaller, 

easy manegeable segments, removes 

duplicate and missing values (Ako and 

Abugor, 2018), ensures the resultant 

decomposed image yields right output 

form, converts all data into their 

numeric equivalent, and encodes data 

onto the appropriate form to be used by 

the ML (CNN-Fuzzy model). 

 

3. Fuzzy Set – aids ML reasoning 

systems to emulate human capacity to 

reason via its degrees of certainty (Ako 

et al., 2021; Ochuko et al., 2009) that 

aids decision support recommendation 

in managing all (non)-binary user 

preferences. A fuzzy system creates set 

of if-then-else ruleset that chooses 

between different control actions and 

transforms such into a fuzzy value 

(Ako et al., 2020) . A fuzzy classifier 

model assigns a class label to an object 

based on an object’s description, so 

that it can also predict each class label. 

Object descriptions are vector values 

with feats relevant for such 

classification task. Classifier learns to 

predict a class labels via training 

algorithm and its accompanying 

dataset. If a training data set is not 

available, classifier is designed to learn 

apriori (prior knowledge) so that 

trained, it classifies objects. Thus, the 

rule-based classifier focuses on if-then 

rules with actions and possible 

outcomes, constructed as a user 

specifies its class rules and linguistic 

variables (fuzzy set) that helps tune a 

fuzzy set in line with such class rules. 

For example: If Math Error is medium 

and is small, Then Class 1 If Math 

Error is medium and is large, Then 

Class 2 etc (Ojugo and Yoro, 2021b). 
Fuzzy cluster scheme groups data as 

linguistic feature homogeneous classes 

known as clusters so that items in the 

same class are as similar as possible 

and vice-versa. Clustering seeks to 

compress data with a large number of 

samples are converted into small 

number of representative clusters . 

Depending on data and task, different 

types of similarity measures are used to 

identify classes, to control how clusters 

are formed. Examples of values that 

can be used as similarity measures 

include distance, connectivity, and 

intensity. 
4. CNN Model Phase – as in Figure 2. Its 

input is tasked with image 

dimensioning onto a compatible size, 

whose output is fed into the 

convolutional layer to extract its best 

feature(s). The extracted image is 

scanned and pooled at its convolutional 

layer to the fully connected layer via 

rendering (Ojugo and Yoro, 2021b). 

These are further explained as thus: 
 

 



   Osiala et al. (2022)/ FUPRE Journal, 9(2):147-163(2025) 

Fupre Journal 9(2),147- 163(2025)  153 
 

Figure 2. The Convolution Neural Network 

 

- Step-1 – The Input Layer retrieves its 

input data via the wavelet transform, 

and dimensions it via the format (h x 

W x C) with h as image height, W as 

weight, and C is color channel. The 

dimension (1960 x 512 x 3) yields the 

value attributes cum image (data) size 

as fed to convolutional layer, which is 

accomplished via feature map, filtering 

mode and pooling process respectively. 

- Step 2 – Filtering scans image to 

extract key feats that specify image 

dimensions as in Equation 1 – which in 

turn, yields the matrix that ensures 

compatibility of features map as its 

output as in Equation 2 to yield the 

convolutional padding and kernels size 

(Dosovitskiy et al., 2020; Emebo et al., 

2019). It uses the ReLU (Rectified 

Linear Unit) to introduce the required 

nonlinearity into the image so as to 

help it transform all negative-to-null 

values. 
𝐹𝑜 =  (𝐹𝑤 ∗  𝐹ℎ ∗  𝑑)        (2) 

𝐹𝑜 =  [
𝐹𝑖 + 2𝑝 −  𝑘

𝑠
] +  1      (3) 

 

- Step 3 – Pooling: With features 

mapped against scanned pixels, the 

system pools via maximum mode to 

select only pixels with the highest 

value  to form input for the convolution 

layer. 

 

- Step 4 – Convolution Layer: Pooled 

image yields input to convolution layer, 

which selects only images with highest 

values. Our 5-by-3 matrix filters image 

dimension to form convolutional layer 

as in Equation 4. Also, it then 

generates pools of 2nd-and-3rd pool-

generation as in Equation 5. 
𝐶𝑂 = ((𝑤 ∗ ℎ)  +  1) ∗ nf)     (4) 

𝐶𝑂 = ((𝑤 ∗ ℎ ∗ 𝑛𝑝) + 1) ∗ 𝑛𝑓)     (5) 

 

- Rendering sums up all the feature maps 

extracted to yield an activation size with 

a matrix array of the best features of all 

the pooled image. CNN introduces light 

intensity to enhance quality of the 

image (Yao et al., 2022) via Equation 6. 

Also, Equation 7 is applied to the last 

layer to ensure emitted radiance in 

image pixel (Eed et al., 2024; Pillai, 

2022). 
𝐴𝑠 = (𝑤 ∗ ℎ ∗ 𝑑)      (6) 

𝐿𝑠(𝑥, 𝑦)

=  𝐿𝑒(𝑥, 𝑦)

+. ∫ 𝑓𝑟(𝑥, 𝑤, 𝑦)𝐿𝑓(𝑥, 𝑤) 𝑐𝑜𝑠 𝜃𝑑𝑤      (7) 

- Fully Connected Layer flattens otput 

images for training phase to learn the 

image features for recognition as in 

Equation 8. It is monitored for accuracy 

to ensure enhanced generalization using 

– with L is loss function, k is number of 

observations, P is prediction, and D is 

training target. 

𝐿 = ∑(𝑃𝑖 − 𝐷𝑖)
2

𝐾

𝑖=𝑙

    (8) 

- Output Layer yields the desired output 

via a Softmax activation that transforms 

all its vector features into the designated 

probability distribution of the image 

input using the Equation 9 (Zhang et al., 

2019). 

𝜎(𝑧)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

   (9) 

 

3.   Result Findings and Discussion 

3.1. Model Performance and Benchmark 
The model was trained and after 30 epochs 

yielded a training and validation accuracy 

of 0.9954 and 0.0029 with a loss and 

validation loss of 0.0109 and 0.1733 

respectively (Ojugo et al., 2013).  The 

accuracy and loss graph in Figure 4.6 shows 

the trajectory of the graph. The confusion 

matrix in Figure 4.7 shows the actual and 

predicted result of the model (Muslikh et al., 

2023a; Safriandono, Setiadi, Dahlan, 

Zakiyah, et al., 2024). From the confusion 

matrix the model accurately predicted the 

different categories of crime contained in 
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the dataset as agreed by (Allen et al., 2024; 

Sinha, 2024) as in Table 1. 

 

Table 1. Classes of Activity 
S/N Dataset Class Accurate Predictions 

1 Abuse 15 

2 Arrest 19 

3 Assault 0 

4 Burglary 24 

5 Normal 28 

6 Robbery 1 

7 Vandalism 15 

 

The confusion matrix shows 3-groups 

of evaluation; two for the crime and one 

normal respectively. The cumulative score 

of the model’s prediction based on the 

evaluation metrics is in Table 2. 

 

Table 2. Classes of Accurate Prediction 
Metrics Scores (%) 

Accuracy 0.9714 97.14 

Precision 1.1420 114.2 

Recall 0.9714 97.14 

F1-Score 0.9683 96.83 

 

 

 
Figure 4. Model Performance evaluation  

 

Security of live and properties of the 

citizens is said to be one of the cardinal 

priorities of government and governance, 

over the years this critical component of 

social integration, coexistence and 

development have experienced a downward 

turn with the plethora of security challenges 

that appears to have overwhelmed the law 

enforcement agencies and government. 

From theft to robbery, burglary to arson, 

kidnap to first degree murder, the list of 

crime and criminality perpetrated across the 

country on daily basis has reached an 

alarming scale with the people helpless and 

government and their agencies put in a state 

of utter confusion.  To mitigate the ever-

evolving security challenge, several 

approach and method have been deployed 

for the improvement of security 

surveillance for the generation of early 

warning signal to increase mitigation 

efforts but with little or no positive impact 

as most of these have been manually driven. 

With the emergence of computer 

technologies and artificial intelligence and 

her subset of machine learning innovation 

in security and surveillance has also 

drastically improved with enhancement in 

security and safety of the society deemed 

more critical above all. The innovations in 

computer vision and image classification 

also has added value to surveillance with 

high level of accuracy and precision. This 

research therefore proposed an improved 

machine learning model for human activity 

recognition using convolutional neural 

network and fuzzy logic algorithm for the 

detection of security threats in surveillance 

video dataset. The model which is a hybrid 

model that integrated a fuzzy logic model to 

a three-layer deep convolutional neural 

network (CNN) model was trained and 

tested with 3,500 image datasets having 7 

classes (Abuse, Arrest, Assault, Burglary, 

Normal events, Robbery and Vandalism) 

with a 70:30 ratio for the training and test 

dataset was extracted from the Kaggle UCF 

crime dataset and the model yielded a 

training and validation accuracy of 0.9954 

and 0.9954. Furthermore, the model yielded 

a prediction accuracy of   97.14%, Recall of 

97.14%, F1-Score of 96.83% and precision 

of 114.2 outperforming the existing system 

when evaluated against the listed evaluation 

parameters and it is suitable to be deployed 

for early warning signal generation for 

incidences of criminality in the society. 

 

3.2. Comparison 

Figure 5 yields performance 

comparison between existing and proposed 

model, which agrees with (Oladele et al., 

2024; Omoruwou et al., 2024).  
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Emordi et al (2024) model was a pre-trained 

VGG16 CNN model integrated with a 

support vector machine (SVM) for human 

activity recognition system and it yielded 

an accuracy of 79.55% with an F1-Score of 

71.63% respectively (Emordi et al., 2024). 

Odiakaose et al. (2024) which is a deep 

learning using continuous wavelength for 

human activity recognition also yielded an 

accuracy of 96.48% with an F1-Score of 

95.44% respectively. From the foregoing, 

the new system outperformed the existing 

models (Odiakaose et al., 2024). 

The new system was evaluated using 

standard evaluation metrics such as model 

accuracy, precision, recall/ sensitivity and 

F1-score respectively. Also the new system 

recorded a training and validation accuracy 

of 0.9954 and 0.0029 with a training loss 

and validation loss of 0.0109 and 0.1733 

after 30 epochs (Ojugo et al., 2023). 

 

4.  CONCLUSION 

This work was underpinned by the work of 

Rajput et al. (2022) which developed a 

CNN model for the surveillance and with 

the presence of blur, irregular and unstable 

dataset of both video and images 

unfortunately their work did not report the 

efficiency of the system with respect to 

standard evaluation metrics of accuracy, 

recall, precision and F1-score respectively. 

Our model was developed using UCF crime 

dataset and was tested and compared with 

two other related works by Altaval et al 

(2021) which developed a a pre-trained 

VGG16 CNN model integrated with a 

support vector machine (SVM) for human 

activity recognition system which yielded 

an accuracy of 79.55% with an F1-Score of 

71.63% and Pavliuk and Misshchuk (2022) 

which is a deep learning using continuous 

wavelength for human activity recognition 

that produced an accuracy of 96.48% with 

an F1-Score of 95.44%. Furthermore, our 

model outperformed these models with a 

higher performance accuracy making it 

more efficient for early detection of security 

and surveillance threats within an 

environment taking data from CCV video 

stream. 
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