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ABSTRACT 

This study proposes a new inertial residual projection method (IRPM) with or 

without Halpern update for solving monotone variational inequality problems 

(VIPs) in real Hilbert spaces. Existing explicit projection methods, including those 

introduced by Noor et al., 2000a, 2000b, are limited by weak convergence 

guarantees, multiple projection steps per iteration, and fixed step-size 

dependence—factors that hinder their efficiency, robustness, and scalability. To 

address these limitations, the proposed IRPM-H method integrates an inertial 

extrapolation step for acceleration, Halpern-type anchoring for strong 

convergence, and a residual-based adaptive step-size strategy that eliminates the 

need for prior knowledge of Lipschitz constants. The algorithm is designed to solve 

VIPs involving monotone operators such as linear mappings with positive 

semidefinite matrices and gradients of convex functions. Under standard 

monotonicity and continuity assumptions, we prove that the sequence generated 

by the IRPM-H method converges strongly to a solution of the variational 

inequality, which also satisfies the fixed-point formulation. Numerical illustrations 

were given to justify the theretical assertons and to demonstrate the effectiveness 

of the proposed models. The results shows that our model compete favourably with 

other existing models cited in the literature.  
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1. INTRODUCTION 

  

Variational inequality problems (VIPs) 

represent a unifying framework for a wide 

class of mathematical models arising in 

diverse fields such as optimization, 

equilibrium theory, network flows, 

economics, engineering, and machine 

learning (Stampacchia, 1964, kinderlehrer 

and Stampacchia, 1980), (Al-Mezel et al. 

2014). Originating in the work of Fichera 

and formalized extensively by Kinderlehrer 

and Stampacchia (kinderlehrer and 

Stampacchia, 1980), the variational 

inequality problem provides an elegant 

formulation for systems where equilibrium 

is subject to constraints and governed by 

nonlinear or monotone dynamics.  

Formally, given a real Hilbert space ℋ , a 

nonempty closed convex set 𝐶 ⊆ ℋ, and a 
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mapping 𝐹: 𝐶 → ℋ , the variational 

inequality problem seeks to find a point 𝑥∗ ∈
𝐶 such that:  

〈𝐹(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 0,    ∀𝑥 ∈ 𝐶. (1) 

When 𝐹  is monotone and Lipschitz 

continuous, the problem admits both rich 

theoretical structure and efficient solution 

strategies. Recent developments highlight its 

operator-theoretic structure and wide 

applicability across optimization and 

equilibrium problems in Hilbert spaces 

(Izuchukwu and Shehu, 2022). 

 

Monotone mappings most especially those 

arising as gradients of convex functions, 

linear transformations with symmetric 

positive semidefinite matrices, and projection 

operators are central to the analysis of 

variational inequalities in Hilbert space (Ram 

and Iqbal, 2022). In practical and applied 

applications such as traffic network 

equilibrium, Nash equilibrium in games, and 

market clearing models, monotonicity often 

encodes rational behavior or conservation 

laws and princples, making Variational 

inequality problems both relevant and 

indispensable for modeling equilibrium 

phenomena (Arezadeh and Nedi¢, 2022).  

 

A major advantage of the Variational 

inequality framework is its reformulation as 

a fixed-point problem, which enables the 

application of projection based iterative 

methods for numerical solution (see Alakoya, 

2024, Alakoya and Mewomo, 2022, Blum 

and Oettli, 1994, Bokodisa, 2021). However, 

despite the elegance and theoretical 

soundness of projection methods such as the 

extragradient algorithm, forward-backward 

splitting, projection and contraction methods, 

several challenges persist. The major one 

among these is the limitation of weak 

convergence particularly in infinite-

dimensional or ill-conditioned settings, 

sensitivity to step-size parameters, and 

computational costs due to multiple 

projection steps per iteration (Korpelevich, 

1976, Bauschke and Combettes, 2017).  

 

To address these limitations, researchers 

have introduced several enhancements (see 

Ceng et al., 2021, Cholamjiak et al., 2019, 

Cholamjiak et al., 2018, Jolaoso et al., 2020, 

Zegeye et al., 2022). Inertial techniques 

inspired by Polyak’s heavy ball method 

introduce a memory term that accelerates 

convergence (Polyak1964), while Halpern-

type schemes provide and guarantees strong 

convergence by anchoring iterates toward a 

fixed reference point (Kraikaew and 

Saejung, 2013, 2015). Meanwhile, adaptive 

step size strategies that relay on adjusting 

step sizes based on local residuals have 

proven effective in improving robustness 

and removing reliance on unknown 

Lipschitz constants (Bux et al., 2022).  

 

Building upon these development, in this 

study, we propose a new explicit projection 

scheme, the Inertial Residual Projection 

Method with Halpern modification (IRPM-

H) which integrates three key innovations: a 

Halpern anchoring term for strong 

convergence, an inertial step for acceleration, 

and a residual based adaptive step size rule 

that allows for practical implementation 

without prior knowledge of operator 

constants e.g. Lipschitz constant.  

 

The design and analysis of IRPM-H address 

gaps in existing methods such as those 

identified in (Noor et al., 2020a, 2020b) 

explicit projection methods, which, though 

elegant, often suffer from slow convergence, 

require fixed step sizes, and involve multiple 

projection steps that limit scalability in high 



 

Ekuma-okereke and Okudu (2025)/ FUPRE Journal, 9(3):21-38(2025) 

 

 
 

Fupre Journal 9(3), 21 - 38(2025)     23 
 
 

dimensional applications.  

 

The aim of this paper is to develop a dual 

mode explicit projection based method for 

solving monotone variational inequality 

problems in Hilbert spaces that achieves the 

same (or better) solution accuracy, strong 

convergence and improved computational 

performance.  

 

2.   METHODOLOGY 
  

2.1: Preliminaries 

 

Definition 2.1 (Inequality Problem)  Let 

𝐻 be a real Hilbert space with inner 

product 〈⋅,⋅〉 and induced norm ∥⋅∥. Let 

𝐶 ⊆ 𝐻 be a nonempty, closed, and convex 

subset and Let 𝑇: 𝐶 → 𝐻 be a given 

operator. 

The Variational Inequality Problem (VIP) 

is to find a point 𝑥∗ ∈ 𝐶 such that:  

〈𝑇(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 0    forall𝑥 ∈ 𝐶. (2) 

This definition is fundamental in monotone 

operator theory and was first formally framed 

in the context of Hilbert spaces by cite 

author here. The set of all such solutions is 

denoted as:  

Ω:= {𝑥∗ ∈ 𝐶|〈𝑇(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 0, 𝑥 ∈ 𝐶}.
 (3) 

The goal in this study is to approximate the 

point 𝑃Ω(𝑢) , the metric projection of a 

chosen anchor point 𝑢 ∈ 𝐻 onto the solution 

set Ω , leveraging the Halpern fixed-point 

framework. 

 

Definition 2.2 (Mapping)  Let 𝑇: 𝐶 → 𝐻 

be an operator.   

• 𝑇 is monotone if:  

〈𝑇(𝑥) − 𝑇(𝑦), 𝑥 − 𝑦〉 ≥ 0    ∀𝑥, 𝑦 ∈ 𝐶. (4)    

• 𝑇 is strongly monotone if there exists. 

 𝜇 > 0 such that:  

〈𝑇(𝑥) − 𝑇(𝑦), 𝑥 − 𝑦〉 ≥ 𝜇 ∥ 𝑥 −
𝑦 ∥2     ∀𝑥, 𝑦 ∈ 𝐶. (5) 

• 𝑇 is pseudo-monotone if:  

〈𝑇(𝑥), 𝑦 − 𝑥〉 ≥ 0 ⇒ 〈𝑇(𝑦), 𝑦 − 𝑥〉 ≥
0    ∀𝑥, 𝑦 ∈ 𝐶. (6) 

Definition 2.3 (Continuity)  A mapping 

𝑇: 𝐶 → 𝐻 is Lipschitz continuous with 

constant 𝐿 > 0 if:  

 ∥ 𝑇(𝑥) − 𝑇(𝑦) ∥
≤ 𝐿 ∥ 𝑥 − 𝑦 ∥     ∀𝑥, 𝑦 ∈ 𝐶. (7) 

Definition 2.4 (onto a Convex Set)  The 

projection of 𝑥 ∈ 𝐻 onto the convex set 𝐶 

is defined as:  

𝑃𝐶(𝑥): = argmin
𝑦∈𝐶

∥ 𝑥 − 𝑦 ∥. (8) 

The projection operator 𝑃𝐶 satisfies:   

• Nonexpansiveness:  

∥ 𝑃𝐶(𝑥) − 𝑃𝐶(𝑦) ∥≤∥ 𝑥 − 𝑦 ∥     ∀𝑥, 𝑦 ∈ 𝐻.
 (9) 

 • Firm Nonexpansiveness:  

∥ 𝑃𝐶(𝑥) − 𝑃𝐶(𝑦) ∥2 +∥ (𝐼 − 𝑃𝐶)(𝑥) − (𝐼 −
𝑃𝐶)(𝑦) ∥2≤∥ 𝑥 − 𝑦 ∥2. (10) 

𝑥∗ = 𝑃𝐶(𝑥∗ − 𝜌𝑇(𝑥∗))   for    𝜌 > 0. (11) 

Where 𝑃𝐶 is the projection onto 𝐶, and 𝜌 >
0 is a step size. 

 

Definition 2.5 (Monotonicity)  A sequence 

{𝑥𝑛} is Fejér monotone with respect to the 

solution set 𝑆 if:  

∥ 𝑥𝑛+1 − 𝑥∗ ∥≤∥ 𝑥𝑛 − 𝑥∗ ∥, ∀𝑥∗∀𝑛 ≥ 0. (12) 

 Definition 2.6 A mapping 𝑇 is said to be 

demiclosed at 0 if, whenever 𝑥𝑛 ⇀ 𝑥  and 

𝑇(𝑥𝑛) → 0 , it follows that 𝑇(𝑥) = 0 . This 

tool is especially useful when combined with 

nonexpansive operators and projection steps  

Definition 2.7 (convergence and Weak 

Convergence)  Strong convergence is 

convergence of sequence in norm while 

weak convergence is convergence in inner 

product.  
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2.2:  IRPM Algorithm and Parameters 

 We begin by formally defining the 

IRPM algorithm, with a complete description 

of the algorithm and its update rule, followed 

by interpretation of the iteration structure and 

parameter roles.  

Inputs:   

• Monotone operator 𝑇:𝐻 → 𝐻  

• A closed convex feasible set 𝐶 ⊆ 𝐻. 𝑃𝐶 

the metric projector.  

• Initial points 𝑥0, 𝑥1 ∈ 𝐶  

• Anchor Point 𝑢 ∈ 𝐻 (e.g., 𝑢 = 𝑥0 )  

 

 Parameters:   

• Halpern Sequence {𝛽𝑘}  

• Inertial Weight {𝛼𝑘} ∈ [0, 𝛼𝑚𝑎𝑥)  𝛼𝑚𝑎𝑥 

limits momentum acceleration 

• Adaptive numerator or Residual Scale 𝛿 >
0  Controls step size sensitivity  

• Step Size bound 𝜌max > 0 

• Safeguard to prevents division by zero 𝜀 >
0  

• Tolerance and Termination threshold tol, 
max iteration 𝐾𝑚𝑎𝑥   

 

Iteration Steps for 𝒌 = 𝟏, 𝟐, 𝟑, . . . , 𝑲𝒎𝒂𝒙  

Algorithm IRPM (without Halpern) 

  

1.  Inertial Step:  

 𝑦𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1), 

 𝛼𝑘 = min (𝛼cap,
𝑘−1

𝑘+2
) 

2.  Residual Calculation:  

 𝑟𝑘 =∥ 𝑇(𝑦𝑘) − 𝑇(𝑥𝑘) ∥ 

3.  Adaptive Step Size:  

 𝜌𝑘 = min (
𝛿

𝑟𝑘+𝜀
, 𝜌max) 

 4.  Projection Step:  

 𝑥𝑘+1 = 𝑃𝐶(𝑦𝑘 − 𝜌𝑘𝑇(𝑦𝑘)) 

 5.  Stopping Rule: Terminate the algorithm 

and return 𝑥𝑘+1 as the solution.  

 Iterationresidual: ∥ 𝑥𝑘+1 −
𝑥𝑘 ∥< tol 

 OR 

 Projectionresidual: ∥
𝑥𝑘+1 − 𝑃𝐶(𝑥𝑘+1 − 𝜌𝑘𝑇(𝑥𝑘+1)) ∥< tol 
 6.  Update Iterates and go for the next 

iteration: 

Output: Approximate solution 𝑥∗ ≈ 𝑥𝑘+1 ∈
𝐶 upon meeting the convergence criterion.  

 

Algorithm IRPM (With Halpern) 

  

 1.  Inertial Step:  

 𝑦𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1), 

 𝛼𝑘 = min (𝛼cap,
𝑘−1

𝑘+2
) 

2.  Residual Calculation:  

 𝑟𝑘 =∥ 𝑇(𝑦𝑘) − 𝑇(𝑥𝑘) ∥ 

3.  Adaptive Step Size:  

 𝜌𝑘 = min (
𝛿

𝑟𝑘+𝜀
, 𝜌max) 

4.  Projection Step:  

 𝑧𝑘 = 𝑃𝐶(𝑦𝑘 − 𝜌𝑘𝑇(𝑦𝑘)) 

5.  Halpern Update:  

 𝛽𝑘 =
1

100𝑘+100
 

 𝑥𝑘+1 = 𝛽𝑘𝑢 + (1 − 𝛽𝑘)𝑧𝑘 

6.  Stopping Rule: Terminate the algorithm 

and return 𝑥𝑘+1 as the solution.  

Iterationresidual: ∥ 𝑥𝑘+1 − 𝑥𝑘 ∥< tol 
 OR 

 Projectionresidual: ∥
𝑥𝑘+1 − 𝑃𝐶(𝑥𝑘+1 − 𝜌𝑘𝑇(𝑥𝑘+1)) ∥< tol 
 7.  Update Iterates and go for the next 

iteration 

 Output: Approximate solution 𝑥∗ ≈
𝑥𝑘+1 ∈ 𝐶  upon meeting the convergence 

criterion. 

 

2.3:  Algorithmic Interpretation 

 We now interpret each component of 

the algorithm in terms of existing literature 

and its contribution to convergence behavior 

and performance. 

1.  Inertial Step: This extrapolates the 

current search direction, accelerating 

convergence with 𝛼𝑘  parameter controlling 
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the momentum. It Escapes flat regions and 

speeds up convergence without sacrificing 

precision. For stability, the sequence {𝛼𝑘} ∈
[0, 𝛼𝑚𝑎𝑥), where 𝛼max < 1. 

2.  Residual Calculation: This measures the 

change in the operator’s value, which is used 

to adapt the step size. 

3.  Adaptive Step Size: With small 𝛿 > 0, 

𝜀 > 0, the step size 𝜌𝑘 is inversely 

proportional to the residual 𝑟𝑘, meaning the 

algorithm takes smaller steps when the 

operator is changing rapidly and larger steps 

up to 𝑟ℎ𝑜𝑚𝑎𝑥 when it is sTable. It uses only 

evaluations of 𝑇 at the current iterate and 

the inertial point; no global. When the 

operator changes rapidly between 𝑥𝑘 and 

𝑦𝑘 

    4.  Projection Step: Ensures the 

step stays within the feasible set 𝐶 by 

correcting the iterate direction using a 

projected residual from the inertial point 𝑦𝑘. 

    5.  Halpern Update: This gently 

pulls the sequence towards the anchor point 

𝑢 to prevent it from oscillating or diverging, 

especially in complex infinite-dimensional 

spaces. This guarantees it will eventually hit 

the true solution which ensures the entire 

sequence converges strongly to a solution. 

    6.  Stopping rule terminate the 

algorithm and return 𝑥𝑘+1 as the solution. 

    7.  The iteration residual checks 

for stability of the sequence. The projection 

residual is a direct measure of how well the 

current point satisfies the fixed point 

condition 𝑥∗ = 𝑃𝐶(𝑥∗ − 𝜌𝑇(𝑥∗)), which is 

equivalent to the VIP 

 To ensure faster convergence, we 

choose 𝛽𝑘 =
1

100𝑘+10
 or more generally 

𝛽𝑘 → 0 with ∑ 𝛽𝑘 = ∞. 

 

2.4  Boundedness of Iterates 

Before proving convergence, we must first 

demonstrate that all iterates generated by the 

IRPM algorithm with or without Halpern 

remain uniformly bounded. Boundedness 

ensures the feasibility of the algorithm and is 

a key prerequisite for invoking deeper 

convergence tools such as the 

demiclosedness principle and Fejér 

monotonicity.  

We proceed by proving several lemmas and 

theorems under the following standard 

assumptions. 

 

Assumption 1  Let 𝑇: 𝐶 → 𝐻 be monotone 

and 𝐿-Lipschitz continuous on a nonempty, 

closed, and convex set 𝐶 ⊂ 𝐻. Assume:   

 • 𝛼𝑘 ∈ [0, 𝛼max] with 0 ≤ 𝛼max < 1  

• 𝛽𝑘 ∈ (0,1) with 𝛽𝑘 → 0, ∑∞
𝑘=1 𝛽𝑘 = ∞  

    • 𝜌𝑘 ∈ [𝜌min, 𝜌max] for some 

0 < 𝜌min < 𝜌max <
2

𝐿
  

We denote the solution set of the VIP by:  

Ω:= {𝑥∗ ∈ 𝐶|〈𝑇(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 0, ∀𝑥 ∈ 𝐶}.
 (13) 

Lemma 2.1 (Fejér Monotonicity of {𝑥𝑘})  

Let 𝑥∗ ∈ 𝛺 . Then the sequence {𝑥𝑘} 
generated by IRPM-H satisfies:  

∥ 𝑥𝑘+1 − 𝑥∗ ∥2≤∥ 𝑥𝑘 − 𝑥∗ ∥2− (1 − 𝛼𝑘)
2 ∥

𝑥𝑘 − 𝑥𝑘−1 ∥2+ errorterms. (14) 

  

Proof. Recall the IRPM with Halpern update 

rule:  

𝑦𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1), 
 𝑧𝑘 = 𝑃𝐶(𝑥𝑘 − 𝜌𝑘𝑇(𝑦𝑘)), 
 𝑥𝑘+1 = 𝛽𝑘𝑢 + (1 − 𝛽𝑘)𝑧𝑘. 
Let 𝑥∗ ∈ Ω, and define:  

 𝛿𝑘 =∥ 𝑥𝑘 − 𝑥∗ ∥2, 
 𝜖𝑘 =∥ 𝑥𝑘 − 𝑥𝑘−1 ∥2. 
We analyze ∥ 𝑥𝑘+1 − 𝑥∗ ∥2 . From 

the update of 𝑥𝑘+1:  

𝑥𝑘+1 = 𝛽𝑘𝑢 + (1 − 𝛽𝑘)𝑧𝑘, 
 by the convexity of the squared norm:  

 ∥ 𝑥𝑘+1 − 𝑥∗ ∥2=∥ 𝛽𝑘𝑢 + (1 − 𝛽𝑘)𝑧𝑘 −
𝑥∗ ∥2. 

Using the convexity identity:  
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 ∥ 𝑎𝑥 + (1 − 𝑎)𝑦 ∥2= 𝑎 ∥ 𝑥 ∥2+ (1 − 𝑎) ∥
𝑦 ∥2− 𝑎(1 − 𝑎) ∥ 𝑥 − 𝑦 ∥2, 
 we get:  

 ∥ 𝑥𝑘+1 − 𝑥∗ ∥2= 𝛽𝑘 ∥ 𝑢 − 𝑥∗ ∥2+
(1 − 𝛽𝑘) ∥ 𝑧𝑘 − 𝑥∗ ∥2− 𝛽𝑘(1 − 𝛽𝑘) ∥ 𝑧𝑘 −
𝑢 ∥2. (15) 

Now bound ∥ 𝑧𝑘 − 𝑥∗ ∥2. Recall:  

𝑧𝑘 = 𝑃𝐶(𝑥𝑘 − 𝜌𝑘𝑇(𝑦𝑘)). 
Invoke the firm nonexpansiveness of 

projection 𝑃𝐶:  

∥ 𝑃𝐶(𝑎) − 𝑃𝐶(𝑏) ∥2

≤ 〈𝑃𝐶(𝑎) − 𝑃𝐶(𝑏), 𝑎 − 𝑏〉, 
 which leads to:  

∥ 𝑧𝑘 − 𝑥∗ ∥2≤∥ 𝑥𝑘 − 𝜌𝑘𝑇(𝑦𝑘) − 𝑥∗ ∥2 −∥
𝑥𝑘 − 𝜌𝑘𝑇(𝑦𝑘) − 𝑧𝑘 ∥2. (16) 

Expand:  

∥ 𝑥𝑘 − 𝜌𝑘𝑇(𝑦𝑘) − 𝑥∗ ∥2=∥ 𝑥𝑘 − 𝑥∗ ∥2−
2𝜌𝑘〈𝑇(𝑦𝑘), 𝑥𝑘 − 𝑥∗〉 + 𝜌𝑘

2 ∥ 𝑇(𝑦𝑘) ∥2. (17) 

Because 𝑥∗ ∈ Ω  and 𝑇  is monotone: 

〈𝑇(𝑦𝑘), 𝑦𝑘 − 𝑥∗〉 ≥ 0. 
Since 𝑦𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1):  

〈𝑇(𝑦𝑘), 𝑥𝑘 − 𝑥∗〉
= 〈𝑇(𝑦𝑘), 𝑦𝑘 − 𝑥∗〉
− 𝛼𝑘〈𝑇(𝑦𝑘), 𝑥𝑘 − 𝑥𝑘−1〉. 

Hence:  

〈𝑇(𝑦𝑘), 𝑥𝑘 − 𝑥∗〉 ≥ −𝛼𝑘〈𝑇(𝑦𝑘), 𝑥𝑘 − 𝑥𝑘−1〉.
 (18) 

Substitute (17) and (18) into (16):  

∥ 𝑧𝑘 − 𝑥∗ ∥2≤∥ 𝑥𝑘 − 𝑥∗ ∥2+
2𝜌𝑘𝛼𝑘〈𝑇(𝑦𝑘), 𝑥𝑘 − 𝑥𝑘−1〉 + 𝜌𝑘

2 ∥
𝑇(𝑦𝑘) ∥2 −∥ 𝑥𝑘 − 𝜌𝑘𝑇(𝑦𝑘) − 𝑧𝑘 ∥2.                                                                     

(19) 

Now plug (19) into (15):  

∥ 𝑥𝑘+1 − 𝑥∗ ∥2≤ 𝛽𝑘

∥ 𝑢 − 𝑥∗ ∥2+ (1
− 𝛽𝑘)[∥ 𝑥𝑘 − 𝑥∗ ∥2

+ 2𝜌𝑘𝛼𝑘〈𝑇(𝑦𝑘), 𝑥𝑘 − 𝑥𝑘−1〉 
     +𝜌𝑘

2 ∥ 𝑇(𝑦𝑘) ∥2 −∥ 𝑥𝑘 −
𝜌𝑘𝑇(𝑦𝑘) − 𝑧𝑘 ∥2] − 𝛽𝑘(1 − 𝛽𝑘) ∥ 𝑧𝑘 −
𝑢 ∥2. 
 

Grouping terms and defining:  

 𝐸𝑘: = 2𝜌𝑘𝛼𝑘〈𝑇(𝑦𝑘), 𝑥𝑘 − 𝑥𝑘−1〉 +

𝜌𝑘
2 ∥ 𝑇(𝑦𝑘) ∥2, 

𝑒𝑘: =∥ 𝑥𝑘 − 𝜌𝑘𝑇(𝑦𝑘) − 𝑧𝑘 ∥2, 
 and noting that 𝛽𝑘 → 0 and the rest decay 

under suiTable assumptions, we arrive at:  

∥ 𝑥𝑘+1 − 𝑥∗ ∥2≤∥ 𝑥𝑘 − 𝑥∗ ∥2− (1 − 𝛼𝑘)
2 ∥

𝑥𝑘 − 𝑥𝑘−1 ∥2+ 𝐸𝑘 − 𝑒𝑘 + boundbias. (20) 

 This completes the proof.  

 

Theorem 2.1 (Boundedness of Iterates)  

Suppose Assumption A holds. Then the 

sequences {𝑥𝑘}, {𝑦𝑘}, {𝑧𝑘}, and {𝑇(𝑦𝑘)} 
generated by the IRPM-H algorithm are 

bounded in 𝐻.  

 

Proof. Let 𝑥∗ ∈ Ω , the solution set of the 

variational inequality. 

 Step 1: Boundedness of {𝒙𝒌} From 

Lemma 4.1 (Fejér Monotonicity), we have:  

∥ 𝑥𝑘+1 − 𝑥∗ ∥2≤∥ 𝑥𝑘 − 𝑥∗ ∥2+
smallerrorterms − (1 − 𝛼𝑘)

2 ∥ 𝑥𝑘 −
𝑥𝑘−1 ∥2. (21) 

 This implies that the sequence {∥ 𝑥𝑘 − 𝑥∗ ∥
}  is non-increasing up to a summable 

perturbation. Hence, {𝑥𝑘} is bounded in 𝐻.  

Step 2: Boundedness of {𝒚𝒌}  Recall the 

update rule:  

𝑦𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1). (22) 

 Since {𝑥𝑘} is bounded and 𝛼𝑘  is bounded 

( 𝛼𝑘 ≤ 𝛼max < 1 ), the difference {𝑥𝑘 −
𝑥𝑘−1}  is also bounded. Therefore, {𝑦𝑘}  is 

bounded in 𝐻.  

Step 3: Boundedness of {𝑻(𝒚𝒌)} Since 𝑇 

is assumed to be Lipschitz continuous:  

∥ 𝑇(𝑦𝑘) ∥≤∥ 𝑇(𝑦𝑘) − 𝑇(𝑥0) ∥ +∥ 𝑇(𝑥0) ∥≤
𝐿 ∥ 𝑦𝑘 − 𝑥0 ∥ +∥ 𝑇(𝑥0) ∥, (23) 

 which implies that {𝑇(𝑦𝑘)} is bounded.  

 Step 4: Boundedness of {𝒛𝒌} Recall:  

𝑧𝑘 = 𝑃𝐶(𝑥𝑘 − 𝜌𝑘𝑇(𝑦𝑘)). (24) 

 Since {𝑥𝑘} and {𝑇(𝑦𝑘)} are bounded, and 

𝜌𝑘  is bounded, it follows that {𝑥𝑘 −
𝜌𝑘𝑇(𝑦𝑘)}  is bounded. The projection 

operator 𝑃𝐶  is nonexpansive, so {𝑧𝑘}  is 

bounded. 
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Thus, all sequences are bounded in 

the Hilbert space 𝐻.  

 

Corollary 2.1 (Boundedness of {𝑥𝑘}) Since 

𝑥𝑘+1 = 𝛽𝑘𝑢 + (1 − 𝛽𝑘)𝑧𝑘, and both 𝑢 and 

{𝑧𝑘} are bounded, it follows that:  

∥ 𝑥𝑘+1 ∥≤ 𝛽𝑘 ∥ 𝑢 ∥ +(1 − 𝛽𝑘)sup
𝑘

∥ 𝑧𝑘 ∥≤

𝐶 < ∞. (25) 

 Hence {𝑥𝑘+1} is uniformly bounded.  

 

Proof. From the IRPM update rule:  

𝑥𝑘+1 = 𝛽𝑘𝑢 + (1 − 𝛽𝑘)𝑧𝑘,    with  𝛽𝑘

∈ (0,1). 
 This is a convex combination of two vectors 

𝑢  and 𝑧𝑘 . From Theorem 2.1, {𝑧𝑘}  is 

bounded in 𝐻, i.e., there exists 𝐵 > 0 such 

that ∥ 𝑧𝑘 ∥≤ 𝐵 for all 𝑘. Thus:  

∥ 𝑥𝑘+1 ∥=∥ 𝛽𝑘𝑢 + (1 − 𝛽𝑘)𝑧𝑘 ∥≤ 𝛽𝑘 ∥ 𝑢
∥ +(1 − 𝛽𝑘) ∥ 𝑧𝑘 ∥≤ max{
∥ 𝑢 ∥, 𝐵} < ∞. 

 

Theorem 2.2 (Strong Convergence of 

IRPM with Halpern):  Let 𝑯 be a real 

Hilbert space, 𝑪 ⊂ 𝑯 a nonempty 

closed convex set, and let 𝑻: 𝑪 → 𝑯 

be a monotone and Lipschitz 

continuous operator. Let 𝜴 denote 

the solution set of the variational 

inequality. Let the sequences 

{𝜶𝒌}, {𝜷𝒌}, {𝝆𝒌} satisfy:   
    • 𝛼𝑘 ∈ [0, 𝛼max), 𝛼max < 1  

    • 𝛽𝑘 → 0, ∑∞
𝑘=0 𝛽𝑘 = ∞, 

∑∞
𝑘=0 |𝛽𝑘+1 − 𝛽𝑘| < ∞  

    • 𝜌𝑘 ∈ [𝜌min, 𝜌max] ⊂ (0,
2

𝐿
)  

 Then the sequence {𝑥𝑘}  generated 

by IRPM-H converges strongly to the unique 

Halpern solution 𝑥∗ = 𝑃Ω(𝑢), i.e.,  

 

lim
𝑘→∞

𝑥𝑘 = 𝑃Ω(𝑢). (26) 

 Proof. Denote 𝑥∗: = 𝑃Ω(𝑢). Our goal is to 

show lim𝑘→∞ ∥ 𝑥𝑘 − 𝑥∗ ∥= 0. 

 Step 1: Boundedness From 

Theorem 2.2, all sequences are bounded. 

Hence:  

 ∃𝑀 > 0suchthat ∥ 𝑥𝑘 ∥, ∥ 𝑦𝑘 ∥, ∥
𝑧𝑘 ∥, ∥ 𝑇(𝑦𝑘) ∥≤ 𝑀    ∀𝑘. 
 

 Step 2: Fixed-Point Reformulation 

The VIP is equivalent to the fixed-point 

problem:  

𝑥∗ = 𝑃𝐶(𝑥∗ − 𝜌𝑘𝑇(𝑥∗))    ∀𝜌𝑘 ∈ (0,2/𝐿). 
 Thus, 𝑥∗ ∈ Ω  is a fixed point of the 

nonexpansive mapping:  

 𝑇𝜌(𝑥): = 𝑃𝐶(𝑥 − 𝜌𝑘𝑇(𝑥)). 

 Step 3: Recursive Inequality From 

Lemma 4.1, {∥ 𝑥𝑘 − 𝑥∗ ∥2} is a quasi-Fejér 

monotone sequence, convergent up to a 

summable perturbation, implying:  

lim
𝑘→∞

∥ 𝑥𝑘 − 𝑥∗ ∥= 𝜂    forsome𝜂 ≥ 0. 

 Step 4: Weak Convergence via 

Demiclosedness Principle From 

monotonicity and Lipschitz continuity of 𝑇, 

and nonexpansiveness of 𝑃𝐶 , the mapping 

𝑥 ↦ 𝑃𝐶(𝑥 − 𝜌𝑇(𝑥))  is demiclosed at zero. 

The bounded sequence {𝑥𝑘}  admits weak 

accumulation points, and each belongs to Ω.  

 Step 5: Halpern Anchoring and 

Strong Convergence The anchor-based 

iteration:  

𝑥𝑘+1 = 𝛽𝑘𝑢 + (1 − 𝛽𝑘)𝑧𝑘, 
 is a Halpern-type iteration. Under the 

conditions:   

    • 𝛽𝑘 → 0,  

    • ∑ 𝛽𝑘 = ∞,  

    • ∑ |𝛽𝑘+1 − 𝛽𝑘| < ∞,  

strong convergence to the projection of 

anchor 𝑢 onto Ω is guaranteed. 

Hence, lim𝑘→∞𝑥𝑘 = 𝑃Ω(𝑢) = 𝑥∗.  

 

 The key distinction of the IRPM 

with Halpern scheme is that strong 

convergence is guaranteed without requiring 

𝑇 to be strongly monotone. The Halpern term 
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𝛽𝑘𝑢  compensates for the lack of strict 

contractivity by enforcing convergence to a 

minimal-norm solution in Ω. 

 

2.5:  Parameter Selection and Practical 

Tuning 

 To ensure effective implementation 

of the IRPM algorithm, this section provides 

a detailed guide on the selection of key 

algorithmic parameters: the inertial weight 

𝛼𝑘 , the Halpern anchor decay 𝛽𝑘 , and the 

adaptive step size 𝜌𝑘. 

1. Inertial Weight 𝜶𝒌 

 The inertial term introduces 

acceleration but must be controlled to avoid 

instability. 

Recommended Setting:  

 

𝛼𝑘 =
𝑘−1

𝑘+2
 (27) 

 This choice ensures:   

    • 𝛼𝑘 ∈ [0,1)  

    • 𝛼𝑘 → 1 slowly  

    • Summability of ∑∞
𝑘=0 ∥

𝛼𝑘(𝑥𝑘 − 𝑥𝑘−1) ∥2< ∞  

 

2. Halpern Decay Sequence 𝜷𝒌 

 The sequence {𝛽𝑘} must satisfy:   

    • 𝛽𝑘 → 0  

    • ∑ 𝛽𝑘 = ∞  

    • ∑ |𝛽𝑘+1 − 𝛽𝑘| < ∞  

 

Recommended Setting:  

 

𝛽𝑘 =
1

1000𝑘+10
 (28) 

 This choice decays enough to maintain 

anchoring while satisfying convergence 

conditions. 

   

3. RESULTS 

To validate the correctness of the 

IRPM algorithm, we now consider some 

examples to show the implementation and 

efficiency of the proposed method. it is 

important to begin with test problems whose 

solutions are known explicitly. Such 

problems allow for direct comparison 

between the iterates generated by the 

algorithm and the true solution, thereby 

providing a clear benchmark for numerical 

accuracy. 

 

Problem A1: Linear Variational 

Inequality 

 

We consider the problem of finding 

𝑥∗ ∈ 𝐶 such that 

 

〈𝑀𝑥∗ + 𝑞, 𝑥 − 𝑥∗〉 ≥ 0,    ∀𝑥 ∈ 𝐶, 
 

 where the mapping is affine 

𝐴(𝑥) = 𝑀𝑥 + 𝑞. Following (Bokodisa et al., 
2021) the problem is defined with: 

 

 𝑀 = [
2 0
0 3

] ,    𝑞 = [
−2
−6

] ,    𝐶 =

{𝑥 ∈ ℝ2: −2 ≤ 𝑥1, 𝑥2 ≤ 5}. 
 The unconstrained solution is 

obtained by solving 𝑀𝑥 + 𝑞 = 04, yielding 

𝑥∗ = [
1
2
]. 

Since (1,2)  lies within the feasible set 𝐶 , 

this vector is also the solution of the 

variational inequality. In this test, we take the 

following parameter values for 

implementation of the IRPM algorithm: 𝛿 =
0.5, 𝜀 = 10−8 , 𝛼cap = 0.5, and stop when 

ever iterate residual ∥ 𝑥𝑘+1 − 𝑥𝑘 ∥< 10−7 

OR projection residual: ∥ 𝑥𝑘+1 − 𝑃𝐶(𝑥𝑘+1 −
𝜌𝑘𝑇(𝑥𝑘+1)) ∥< 10−7 
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Table 1: Convergence results for IRPM algorithm on Problem A1    

  No. iteration  Iteration solution   Iteration Residual   Projection Residual  

 1   [1.00000000, 1.96000000]   0.96000000   0.03840000  

2   [1.00000000, 2.00800000]   0.04800000   0.00768000  

3   [1.00000000, 2.00108800]   0.00691200   0.00104448  

4   [1.00000000, 1.99990528]   0.00118272   0.00009093  

5   [1.00000000, 1.99997256]   0.00006728   0.00002635  

6   [1.00000000, 2.00000025]   0.00002769   0.00000024  

7   [1.00000000, 2.00000056]   0.00000032   0.00000054  

8   [1.00000000, 2.00000003]   0.00000053   0.00000003  

 

Observation: This Table 1 demonstrates the 

convergence behavior of the IRPM with or 

without Halpern algorithm applied to 

Problem A1. The algorithm shows rapid 

convergence to the known solution, with both 

the iteration residual and projected residual 

decreasing monotonically across iterations.  

 

Table 2: Performance comparison of algorithms on Problem A1    

  Algorithm   No. Iteration   No. Projection   CPU Time (s)   Operator Eval  

 IRPM   08   1(8)   0.04   25  

 Alg 3.1   16   1(16)   0.07   16  

 Alg 3.4   09   2(18)   0.05   18  

 

Observation: This Table 2 compares the 

IRPM algorithm with algorithms 3.1 and 3.4 

in (Noor et al., 2020a) we use the step size 

rule 𝜌 = (0,
2

𝐿
) for both algorithm 3.1 and 

3.4 for Problem A1. It shows that our 

suggested algorithm performs better in terms 

of number of iterations, CPU Time.  

 

Problem A2: 3D Linear Variational Inequality 

 

Let 𝐶 = {𝑥 ∈ ℝ3: −1 ≤ 𝑥𝑖 ≤ 1} and define the operator 𝐴:ℝ3 → ℝ3 as  

 𝐴(𝑥) = [

4𝑥1 + 𝑥2 + 𝑥3 − 1
𝑥1 + 3𝑥2 + 2
𝑥1 + 2𝑥3 + 0.5

] 

Find 𝑥∗ ∈ 𝐶 such that  

 〈𝐴(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 0,    ∀𝑥 ∈ 𝐶. 
 

with projection onto 𝐶 clipping component-wise:  

 [𝑃𝐶(𝑥)]𝑖 = min(max(𝑥𝑖, −1),1) 

 and initial point 𝑥0 = (0,0,0)⊤, the exact solution is:  

 𝑥∗ = (
23

38
−

33

38
−

21

38
) 
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 In this test, we take the following parameter values for the implementation of the IRPM-

H (IRPM): 𝛿 = 0.5, 𝜌max = 0.25, tol = 10−7, 𝜖 = 10−8, 𝛼cap = 0.5 

 

Table 3: IRPM & IPPM-H with different inertial values for Problem A2    

Algorithm   Inertial value   No iteration   CPU time(s)   Remark  

IRPM-   0   35   0.27   Converges  

  
𝑘−1

𝑘+2
   43   0.33   √  

  min (𝛼cap,
𝑘−1

𝑘+2
)   23   0.12   √  

IRPM-H   0   27   0.34   Converges  

  
𝑘−1

𝑘+2
   41  0.27   √  

  min(𝛼)   23   0.27   √  

Observation: This Table 3 demonstrates the 

convergence behavior of the IRPM with or 

without Halpern algorithm applied to 

Problem A2. The algorithm shows rapid 

convergence to the known solution, with both 

the iteration residual and projected residual 

decreasing monotonically across iterations.  

 

 

Table 4: Algorithm Comparison for Problem A2    

  Algorithm   No. Iteration   No. Proj   CPU Time (s)   Operator Eval  

 IRPM   23   1(23)   0.12   69  

 Alg 3.1   76   1(76)   0.69   76  

 Alg 3.4   24   2(48)   0.38   48  

 

Observation: This Table 4 compares the 

IRPM algorithm with algorithms 3.1 and 3.4 

in (Noor et al., 2020b) we use the step size 

rule 𝜌 = (0,
2

𝐿
) for both algorithm 3.1 and 

3.4 for Problem A2. It shows that our 

suggested algorithm performs better in terms 

of number of iterations, CPU Time.  

 

 

Problem A3: Classic Structured Test with Tridiagonal Positive Semidefinite Matrix 

 

Let 𝑇(𝑥) = 𝑀𝑥 + 𝑞 where 

 

 𝑀 =

[
 
 
 
 
4 −1 0 ⋯ 0
−1 4 −1 ⋯ 0
0 −1 4 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 4]

 
 
 
 

,    𝑞 =

[
 
 
 
 
−1
−1
−1
⋮
−1]

 
 
 
 

 

 

 with the feasible set  

 𝐶 = {𝑥 ∈ ℝ𝑛: 𝑥𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑛} 
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 we can easily see that 𝑇 is monotone as 𝑀 is symmetric and tridiagonal, positive definite 

with eigenvalues > 0. We are to find 𝑥∗ ∈ 𝐶 such that  

 〈𝑇(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 0,    ∀𝑥 ∈ 𝐶 

For dimensions 𝑛 = (10,30,50,100) with initial points 𝑥0 = (0,… ,0)𝑇, the unique solution is 

𝑥∗ = (1,… ,1). This problem was tested in (Noor et al., 2020b) new Example 3.  

 We take the following parameters for implementation: 𝛿 = 0.5, 𝜌max = 0.2, 𝛼cap =

0.5, tol = 10−7, 𝜌 ∈ (0,
2

𝐿
) for algorithm 3.1 and 3.4  

  

Table 5: Algorithm comparison for Problem A3 for Cases n = 10, 50, 100     

Case n = 10 

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

 IRPM   21   1(21)   0.03   42  

 Alg 3.1   38   1(38)   0.52   77  

 Alg 3.4   19   2(38)   0.45   58  

 Case n = 30    

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

 IRPM   21   1(21)   0.03   42  

 Alg 3.1   41   1(41)   0.64   83  

 Alg 3.4   21   2(42)   0.23   64  

 Case n = 50  

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

 IRPM   21   1(21)   0.03   42  

 Alg 3.1   42   1(42)   0.65   85  

 Alg 3.4   21   2(42)   0.29   64  

 Case n = 100     

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

 IRPM   21   1(21)   0.06   42  

 Alg 3.1   43   1(43)   0.73   87  

 Alg 3.4   22   2(44)   0.35   67  

 

 

Observations: Observation: This Table 5 

compares the IRPM algorithm with 

algorithms 3.1 and 3.4 in (Noor et al., 

2020b) we use the step size rule 𝜌 = (0,
2

𝐿
) 

for both algorithm 3.1 and 3.4 for Problem 

A3. It shows that our suggested algorithm 

performs better in terms of number of 

iterations, CPU Time and operator 

evaluation for three cases of n. 

 

 

Problem B1: Linear Complementarity 

Problem 

 

Let 𝑛 ∈ ℕ. The the operator 𝑇:ℝ𝑛 → ℝ𝑛 is 

defined by  

 𝑇(𝑥) = 𝑀𝑥 + 𝑞 
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 where  

 𝑀 = diag(
1

𝑛
,
2

𝑛
, … ,

𝑛

𝑛
) ∈

ℝ𝑛×𝑛, 
 𝑞 = (−1,−1,… ,−1)𝑇 ∈ ℝ𝑛 

with the feasible set the non-negative orthant 

intersected with box constraints:  

 𝐶 = {𝑥 ∈ ℝ𝑛: 0 ≤ 𝑥𝑖 ≤ 1, 𝑖 =
1,2, … , 𝑛} 

 We are to find 𝑥∗ ∈ 𝐶 such that  

 〈𝑇(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 0,    ∀𝑥 ∈ 𝐶 

For dimensions 𝑛 = (10,30,50,100) with 

initial points 𝑥0 = (0,… ,0)𝑇 and unique 

solution 𝑥∗ = (1,… ,1)𝑇. This test problem 

was treated in Noor et al., 2000a Example 4. 

We take the following parameters for 

implementation: 𝛿 = 0.5 , 𝜌max = 0.3 , 

𝛼cap = 0.5, tol = 10−7, 𝜌 ∈ (0,
2

𝐿
). 

  

Table 6: Algorithm comparison for Problem B1 for cases n = 10, 30, 50,100    

Case n = 10  

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

 IRPM   7   1(7)   0.05   14  

Alg 3.1   14   1(14)   0.01   29  

Alg 3.4   7   2(14)   0.09   23  

 Case n = 30  

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

IRPM   7   1(7)   0.05   14  

Alg 3.1   14   1(14)   0.02   29  

Alg 3.4   7   2(14)   0.05   23  

       Case n = 50  

   Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

IRPM   7   1(7)   0.05   14  

Alg 3.1   14   1(14)   0.02   29  

Alg 3.4   7   2(14)   0.05   23  

 Case n = 100    

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

IRPM   7   1(7)   0.05   14  

Alg 3.1   14   1(14)   0.01   29  

Alg 3.4   7   2(14)   0.05   23  
 

Observations: This Table 6 compares the 

IRPM algorithm with algorithms 3.1 and 3.4 

in (Noor et al., 2020b) we use the step size 

rule 𝜌 = (0,
2

𝐿
) for both algorithm 3.1 and 

3.4 for Problem B1. It shows that our 

suggested algorithm performs better in terms 

of number of iterations, CPU Time and 

operator evaluation for three cases of n. 

 

Problem B2: The HP-Hard Variational 

Inequality Problem 

This problem, inspired by the 

construction of Harker, is specifically 

designed to present a significant challenge 

for algorithms designed to solve Variational 

Inequality Problems (VIP). The goal is to 

find a vector 𝐱∗ ∈ 𝐶 such that: 

〈𝑇(𝐱∗), 𝐱 − 𝐱∗〉 ≥ 0    ∀𝐱 ∈ 𝐶, 
 where the function 𝐹:ℝ𝑛 → ℝ𝑛  is given 

by:  
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 𝑇(𝐱) = 𝑀𝐱 + 𝐪, 
with 𝑀 ∈ ℝ𝑛×𝑛  a positive definite matrix 

and 𝐪 ∈ ℝ𝑛  a vector. The matrix 𝑀  is 

constructed to be positive definite through 

the summation of three randomly generated 

matrices:  

 𝑀 = 𝐴⊤𝐴 + 𝐵 + 𝐷. 
 

Matrix 𝑨 : is a dense matrix where each 

entry 𝑎𝑖𝑗  is independently and uniformly 

generated from the interval (−5,5) . The 

product 𝐴⊤𝐴 ensures the resulting matrix is 

positive semi-definite. Matrix 𝑩: A skew-

symmetric matrix ( 𝐵 = −𝐵⊤ ) with each 

entry 𝑏𝑖𝑗  for 𝑖 < 𝑗  is independently and 

uniformly generated from (−5,5) , with 

𝑏𝑗𝑖 = −𝑏𝑖𝑗  and 𝑏𝑖𝑖 = 0 . This component 

introduces antisymmetry into the system 

without affecting the positive definiteness of 

𝑀, as 𝐱⊤𝐵𝐱 = 0 for all 𝐱.  

Matrix 𝑫: A diagonal matrix where each 

diagonal entry 𝑑𝑖𝑖  is independently and 

uniformly generated from the interval 

(0,0.3). This matrix ensures 𝑀  is positive 

definite and full rank. The vector 𝐪  is 

generated such that each component 𝑞𝑖  is 

independently and uniformly distributed 

from the interval (−500,0). This significant 

negative offset is a primary source of the 

problem’s difficulty, as it forces the solution 

towards the boundary of the simplex, testing 

the algorithm’s ability to handle active 

constraints.  

 The feasible set 𝐶 is defined as the 

standard simplex in ℝ𝑛:  

 𝐶 = {𝐱 ∈ ℝ𝑛|𝐱 ≥ 𝟎, 𝐞⊤𝐱 = 𝑛}, 
 

where 𝐞 denotes the vector of ones in ℝ𝑛. 

This constraint requires the solution to be a 

non-negative vector whose components sum 

to 𝑛 with initial point set to: 𝐱0 =
(1,1, … ,1). A similar type of problem was 

tested in (Noor et al., 2000a, 2000b).  

 We take the following parameters: 

𝛿 = 0.5 , 𝜌max = 0.005 , 𝛼cap = 0.5 , tol =

10−7, 𝜌 ∈ (0,
2

𝐿
). 

  

 

 

Table 7: Algorithm comparison for Problem B2 for Cases n = 10, 30, 50, 100   

        

Case n = 10 

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

 IRPMM   42   1(42)   0.041   84  

Alg 3.1   33   1(33)   0.039   33  

Alg 3.4   46   2(92)   0.043   92  

  Case n = 30  

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

IRPM   171   1(171)   0.038   342  

Alg 3.1   749   1(749)   0.104   749  

Alg 3.4   180   2(360)   0.061   360  

 Case n = 50  

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

IRPM   360   1(360)   0.104   720  

Alg 3.1   1091   1(1091)   0.140   1091  
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Alg 3.4   365   2(730)   0.077   730  

 Case n = 100   

  Algorithm   No. Iter   No. Proj   CPU Time (s)   Operator Eval  

IRPM   311   1(311)   0.1073   622  

Alg 3.1   799   1(799)   0.107   799  

Alg 3.4   337   2(674)   0.083   674  
 

Observations: This Table 7 compares the 

IRPM algorithm with algorithms 3.1 and 3.4 

in (Noor et al., 2020b) we use the step size 

rule 𝜌 = (0,
2

𝐿
) for both algorithm 3.1 and 

3.4 for Problem B2. It shows that our 

suggested algorithm performs better in terms 

of number of iterations, CPU Time and 

operator evaluation for three cases of n. 

 

The Braess Network Problem 

This problem illustrates the Braess Paradox, 

a phenomenon where adding capacity to a 

network (e.g., a new road) can lead to 

increased overall travel time and congestion 

for all users. This problem is formulated as a 

Variational Inequality (VI) considered in 

Marcotte and possesses a known, unique 

solution, making it an ideal test case for 

validating algorithmic correctness and 

observing fundamental performance 

characteristics.  

 The network is defined by a directed 

graph 𝐺(𝑁, 𝐴) with:   

    • Node Set: 𝑁 = {1,2,3,4}  

    • Arc Set: 𝐴 =
{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} =
{(1,2), (1,3), (2,3), (2,4), (3,4)}  

 

A total travel demand of 6 units flows from 

origin node 1 to destination node 4. The 

vector of arc flows is denoted as 𝐱 =
(𝑥12, 𝑥13, 𝑥23, 𝑥24, 𝑥34)

𝑇 ∈ ℝ+
5 . The cost 

(e.g., travel time) on each arc is a linear, 

separable function of its own flow. The cost 

vector 𝐓(𝐱) is given by: 

 𝐓(𝐱) = 𝑀𝐱 + 𝐪 

  where: 

    • 𝑀 = diag(10,1,1,1,10) is a 

diagonal matrix of congestion sensitivity 

parameters.  

    • 𝐪 = (0,50,10,50,0)𝑇 is a 

vector of free-flow travel times.  

 This yields the following explicit cost functions:  

 

𝑇12(𝑥12) = 10𝑥12

𝑇13(𝑥13) = 𝑥13 + 50

𝑇23(𝑥23) = 𝑥23 + 10
𝑇24(𝑥24) = 𝑥24 + 50
𝑇34(𝑥34) = 10𝑥34

 

The feasible set 𝐶 consists of all non negative flow vectors 𝐱 that satisfy flow conservation at 

every node and is given as:  

 𝐶 = {𝐱 ∈ ℝ+
5 |𝐵𝐱 = 𝐛} 

 where 𝐵 is the node-arc incidence matrix:  
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 𝐵 =

[
 
 
 
 
1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1

]
 
 
 
 

    (rowscorrespondtonodes1to4) 

 

and 𝐛 = (6,0,0, −6)𝑇 is the supply/demand 

vector, encoding 6 units of flow entering at 

node 1 and exiting at node 4. For 

computational purposes, due to the linear 

dependence in the rows of 𝐵 (rank = 3), the 

first row is removed to form a full row rank 

matrix 𝐵̂  and a corresponding reduced 

vector 𝐛̂ = (0,0, −6)𝑇. 

The traffic equilibrium is 

characterized by the solution 𝐱∗ ∈ 𝐶  such 

that:  

 〈𝐓(𝐱∗), 𝐱 − 𝐱∗〉 ≥ 0    ∀𝐱 ∈ 𝐶 

  where 〈⋅,⋅〉 denotes the inner product. This 

condition ensures that no user can 

unilaterally change their route to reduce their 

travel cost. The unique solution to this VI is:  

 𝐱∗ = (4,2,2,2,4)𝑇 

The paradox is observed if arc (2,3) is 

removed; the resulting equilibrium yields a 

lower total system travel time, demonstrating 

that the presence of the "shortcut" is 

collectively detrimental. To test the 

algorithms from a non equilibrium state, the 

following initial flow vector is used:  

𝐱𝟎 = (6,0,6,0,6)𝑇 

This initial point represents a state where all 

flow is forced along the path 1 → 2 → 3 →
4, providing a significant deviation from the 

true equilibrium for algorithms to overcome. 

We take the following parameters: 𝛿 = 0.5, 

𝜌max = 0.3 , 𝛼cap = 0.5 , tol = 10−7 , 𝜌 ∈

(0,
2

𝐿
). 

 

Table 8: Convergence of Algorithms to solutions to Braess Network Problem    

  No. Iter   Iter solution  Iter Residual Proj Residual 

 1   [4.049375, 1.950625, 2.098750, 1.950625, 4.049375]   5.44648998   0.13616225  

 2   [3.669576, 2.330424, 1.339151, 2.330424, 3.669576]   1.07423479   0.21979868  

 3   [3.877126, 2.122874, 1.754252, 2.122874, 3.877126]   0.58704045   0.25900687  

 4   [3.999523, 2.000477, 1.999045, 2.000477, 3.999523]   0.34619024   0.00131675  

 5   [4.001518, 1.998482, 2.003036, 1.998482, 4.001518]   0.00564413   0.00418627  

 6   [4.000063, 1.999937, 2.000126, 1.999937, 4.000063]   0.00411572   0.00017344  

 7   [3.999983, 2.000017, 1.999967, 2.000017, 3.999983]   0.00022489   0.00004582  

 8   [3.999999, 2.000001, 1.999997, 2.000001, 3.999999]   0.00004301   0.00000389  

 9   [4.000000, 2.000000, 2.000000, 2.000000, 4.000000]   0.00000442   0.00000043  

 10   [4.000000, 2.000000, 2.000000, 2.000000, 4.000000]   0.00000054   0.00000005  

Observation: This Table 8 demonstrates the 

convergence behavior of the IRPM with or 

without Halpern algorithm applied to Brass 

Network Problem . The algorithm shows 

rapid convergence to the known solution, 

with both the iteration residual and projected 

residual decreasing monotonically across 

iterations.  
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4. CONCLUSION 

We introduced two algorithms called IRPM 

with or without Halpern update applied to 

solving different variational inequality 

problems. The IRPM without Halpern is 

known to converge weakly to the known 

solution while we proved strong convergence 

for IRPM with Halpern update. Using a 

stopping criterion or tolerance value, the two 

contructed algorithms shows rapid 

convergence to the known solution, with both 

the iteration residuals and projected residuals 

decreasing monotonically across iterations as 

displayed through Tables 1-8. The algorithms 

so constructed and studied improved 

computational performance and is good fit 

for solving variational inequality problems in 

Hilbert without computing the projection rule 

twice which is comptutationally constly as in 

the case of extragradient method.   
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