
*Corresponding author, e-mail:emudiagaeric@gmail.com 
DIO 

©Scientific Information, Documentation and Publishing Office at FUPRE Journal 

Research Article / Review Article    FUPRE JOURNAL 9(3):117-127(2025) 

              FUPRE Journal   
  

                     of 

Scientific and Industrial Research 
ISSN: 2579-1184(Print)                                                                                                             ISSN: 2578-1129 (Online) 

http://fupre.edu.ng/journal 

An Integrated Approach to Process Optimization and Quality Monitoring Manufacturing 

Industry 

ODIOR, K. A.1,* , EMUDIAGA, R. E.,1   

1Department of Statistics, Delta State Polytechnic, Otefe, Oghara, Delta State 

 
ARTICLE INFO 

 

ABSTRACT 

This study applied multiple linear regression analysis in conjunction with 

statistical process control (SPC) to monitor and improve the quality of plastic 

bottle production. Process inputs such as additive level, melt temperature, 

injection speed, mold temperature, cooling time, and ambient temperature were 

analyzed against three key quality outputs: tensile strength, surface quality score, 

and dimensional precision. X̄ control charts were used to detect variations in each 

quality characteristic, while regression models identified which process inputs 

significantly influenced these outcomes. Results revealed that additive level and 

melt temperature were most impactful on tensile strength, mold temperature and 

cooling time influenced surface quality, and injection speed and mold temperature 

strongly affected dimensional precision. Sensitivity analysis on the surface quality 

model showed that optimized input values could align output performance with 

control chart expectations, confirming the utility of regression for process 

optimization. The study concludes that integrating regression analysis with SPC 

provides a statistically grounded approach for identifying critical variables and 

improving product quality in manufacturing environments. 
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1. INTRODUCTION 

Maintaining consistent quality in plastic 

bottle manufacturing is critical for meeting 

regulatory standards, ensuring packaging 

integrity, and reducing defects. Statistical 

Process Control (SPC) has emerged as a 

cornerstone methodology in industrial 

quality assurance, helping production 

engineers detect variations early and 

implement corrective actions before products 

deviate from specifications. In injection 

molding processes, multiple input variables, 

such as melt temperature, mold temperature, 

and cooling time, interact in complex ways to 

influence output quality attributes like tensile 

strength and dimensional precision (Rusandi 

and Sulistiyowati, 2019). Thus, an effective 

process monitoring system should integrate 

tools capable of handling multivariate inputs 

and outputs.  

SPC originates from Shewhart’s pioneering 

work in the early 20th century and has 

evolved to handle multivariate and dynamic 

manufacturing environments (Odinikuku, 

http://fupre.edu.ng/journal
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2018). While traditional X̄-R and individuals 

charts track univariate output variables, more 

advanced methods, such as regression control 

charts, can adjust for known input variation, 

improving sensitivity to assignable causes. 

For plastic bottles, where chemical, thermal, 

and mechanical influences overlap, 

regression-adjusted charts ensure that 

process control reflects true anomalies rather 

than natural input-driven variation (Imran, et 

al., 2022). Consequently, defects in tensile 

strength or dimensional precision are less 

likely to trigger false alarms when 

predictable input fluctuations are accounted 

for. 

Multiple regression analysis provides a 

statistical lens to quantify and interpret the 

relationships between controlled inputs and 

quality outputs. As noted in studies of 

injection molding, process parameters like 

melt temperature, injection speed, and 

cooling time can significantly affect 

mechanical properties of plastic parts (Krantz 

et al., 2025). Through regression coefficients 

and hypothesis testing, factory engineers can 

identify critical process levers input settings 

that most strongly influence product quality 

metrics. This insight feeds back directly into 

SPC implementation, enabling focused 

monitoring and tighter control over 

influential variables, while deprioritizing 

statistically insignificant ones. 

The integration of control charts with 

regression models presents several strategic 

benefits. Firstly, by explaining systematic 

variation through regression, SPC charts 

become more responsive to genuine process 

shifts rather than predictable input effects. 

Secondly, identifying key input variables 

through model tests allows for targeted root-

cause analysis when an alarm occurs 

(Ademujimi et al, 2017). Finally, the 

approach aligns with continuous 

improvement frameworks (e.g., Six Sigma or 

Lean) by blending real-time monitoring with 

causal inference, enabling both detection and 

prevention of quality deviations, as supported 

by modern manufacturing literature. 

Plastic bottle production involves multiple 

interacting variables: additive levels 

influence material properties, melt and mold 

temperatures affect flow and cooling 

dynamics, injection speed impact’s part 

filling and residual stresses, and cooling time 

governs crystallinity and dimensional 

stability. Environmental factors such as 

ambient temperature also affect heat transfer 

rates (Xu, et al., 2014). Output performance 

metrics, tensile strength, surface quality, and 

precision, reflect these underlying 

conditions. Regression models can 

disentangle and quantify each input’s 

contribution, transforming a complex system 

into a more manageable set of control 

priorities. 

Each quality attribute is measured and 

charted appropriately. Tensile strength and 

dimensional precision, continuous variables, 

are best served by X̄-R or X̄-S charts, 

monitoring mean and dispersion over time. 

Surface quality, often rated by inspectors, 

may be charted via individuals (I-MR) 

control charts if treated numerically. Where 

ratings are categorical or ordinal, attribute 

charts may be more suitable (Kurt, et al, 

2009). Regression-adjusted charts, such as 

Shewhart or CUSUM charts conditioned on 

input covariates, enhance sensitivity and 
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reduce false signals due to input-value 

variation. Regression not only identifies 

cause-effect relationships but also allows for 

more granular control. Input variables with 

significant regression coefficients, especially 

at stringent p-value thresholds (e.g., p < 

0.05), can be prioritized in process control. 

Those found non-significant can be given 

wider tolerance bands or removed from 

monitoring efforts, simplifying control 

strategies. This methodology effectively 

channels resources toward the most impactful 

process levers and aligns control effort with 

measurable performance drivers. 

Studies in similar manufacturing contexts 

illustrate successful implementation of this 

dual control-regression approach. For 

instance, plastics and glass packaging lines in 

Asia and Europe have reported defect 

reductions of 10–40% using SPC (control 

charts and Pareto/FMEA) guided by 

regression-driven root cause analyses (Maruf 

et al., 2016). Such real-world successes 

validate that combining regression with 

quality control is not merely theoretical but 

operationally effective, offering both early 

warning systems and data-driven 

interventions. Effective SPC and regression 

modeling require structured data collection. 

Subgroup sampling, for example, batches of 

bottles produced under nominal operating 

conditions, provides replicate observations 

for control charts. Individual-part inspection 

may be necessary for surface scoring.  

Rusandi and Sulistiyowati (2019) applied 

SPC and FMEA to plastic cup production, 

reporting a 42% defect reduction by 

identifying cutting tool wear as a root cause. 

While they focused on attribute defect rates, 

their approach mirrors ours, using SPC to 

detect anomalies and regression/FMEA to 

trace significant factors. However, their study 

lacked quantitative modeling of how process 

inputs (e.g., temperature settings) influenced 

defect rates, highlighting the need for 

integrated monitoring and modeling. Imaroh 

and Mustofa (2022) employed control charts 

and Pareto diagrams in glass bottle 

manufacturing, achieving a 10% defect rate 

reduction and Rp 59 million cost savings. 

Similarly, Odinikuku (2018) combined X̄-R 

and p-charts in spirit bottle production, 

identifying out-of-control variables and 

reducing quality loss via the Taguchi loss 

function. These real-world implementations 

confirm that control charting in bottle 

production is effective, but do not incorporate 

regression to identify input–output causality, 

underscoring our study’s contribution. 

Recent work by Tayalati et al. (2024) 

integrated SPC with LSTM-based 

autoencoders in injection molding, 

specifically detecting anomalies in melt 

cushion parameters with an R² of 0.993. 

While advanced, this method relies on 

neural-network–generated control limits. In 

contrast, our proposal emphasizes classical 

multiple regression with hypothesis testing 

and control charts, offering interpretability, 

simplicity, and actionable insight into 

variable significance, which is crucial for 

operator-driven process improvement. 

Nguyen et al. (2021) examined 

autocorrelation's effect on Shewhart-RZ ratio 

control charts, showing regression-based 

charts remain effective under serial 

dependence. Likewise, Ebadi et al. (2020) 

reviewed multivariate covariance monitoring 

methods, revealing gaps in handling 
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measurement dependencies. These studies 

validate the theoretical rigor behind 

regression-SPC and signal the need for our 

integrated attention to model validity, 

correlation, and residual structure. 

The rationale for this study stems from the 

need to enhance quality control and process 

optimization in plastic bottle manufacturing, 

where multiple interrelated input variables, 

such as melt temperature, injection speed, 

and additive concentration, significantly 

influence critical quality outputs like tensile 

strength, surface finish, and dimensional 

precision. Traditional control charts alone 

may not effectively capture the influence of 

these dynamic inputs on output variability, 

often leading to false alarms or undetected 

shifts. Therefore, the goal of this study is to 

integrate regression analysis with statistical 

process control (SPC) techniques to identify 

which input variables significantly affect 

production quality, and to use that knowledge 

to design input-focused control strategies. 

This dual approach aims to achieve a 

statistically in-control process that is both 

efficient and responsive to meaningful 

variations. 

2. METHODOLOGY 

This study adopted a quantitative research 

design, employing a combination of 

Statistical Process Control (SPC) techniques 

and multiple regression analysis to evaluate 

and monitor the production process of plastic 

bottles. Data were collected from a standard 

plastic injection molding facility, capturing 

both input process variables, such as Additive 

Level (%), Melt Temperature (°C), Injection 

Speed (mm/s), Mold Temperature (°C), 

Cooling Time (s), and Ambient Temperature 

(°C), and output quality metrics including 

Tensile Strength (MPa), Surface Quality 

Score, and Dimensional Precision (mm). For 

process monitoring, appropriate control 

charts (X̄-R) were developed for each output 

metric based on the nature and distribution of 

the data. The SPC phase ensured that the 

process was under statistical control before 

proceeding with regression modeling. 

Following process stabilization, multiple 

linear regression models were fitted to each 

quality output variable to determine the 

influence and statistical significance of the 

various input parameters. Diagnostic checks, 

including residual analysis, and model fitness 

indicators (R², Adjusted R², and p-values), 

were conducted to validate the models. 

Significant predictors from the regression 

models were then cross-referenced with the 

control charts to establish a direct link 

between input variation and output quality, 

forming a data-driven basis for upstream 

process control and continuous improvement. 

All statistical analyses were performed using 

Minitab 21 and R version 4.3.0. 

 

The multiple regression equation to be estimated is as follows: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝛽6𝑋6 + 𝑒𝑖𝑗    (1) 

where: 

Y = is Tensile Strength  
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𝑋1 = is Additive Level (%) 

𝑋2 = Melt Temperature (°C) 

𝑋3 = Injection Speed (mm/s) 

𝑋4 = Mold Temperature (°C) 

𝑋5 =  Cooling Time (s) 

𝑋6 = Ambient Temperature (°C) 
 

Suppose that there are p independent variables and n observations (x11, x12,…, x1p, yi), i = 1, 2, …, 

n  and the model relating the independent variables to the dependent variable is specified in 

equation (1). Given the value of y  denoted by yi the system of the above equation becomes: 

𝑦1     =     𝛽0 + 𝛽1𝑋11 + 𝛽2𝑋12 +⋯+ 𝛽𝑝𝑋1𝑝 + 𝜀1 

𝑦1     =     𝛽0 + 𝛽1𝑋21 + 𝛽2𝑋22 +⋯+ 𝛽𝑝𝑋2𝑝 + 𝜀2 

⋮       ⋮     ⋮ ⋮       ⋮        ⋮ 
𝑦1     =     𝛽0 + 𝛽1𝑋𝑛1 + 𝛽2𝑋𝑛2 +⋯+ 𝛽𝑝𝑋𝑛𝑝 + 𝜀𝑛 

Expressing the above system in matrix form we obtain as follows; 

(

𝑦1
𝑦2
⋮
𝑦𝑛

) = 

(

 

1 𝑋11 𝑋12⋯ 𝑋1𝑝
1 𝑋21 𝑋22⋯ 𝑋2𝑝
⋮ ⋮ ⋮ ⋮
1 𝑋𝑛1 𝑋𝑛2⋯ 𝑋𝑛𝑝)

 (

𝛽0
𝛽1
⋮
𝛽𝑘

)+ (

𝜀1
𝜀2
⋮
𝜀𝑛

)       (2) 

The model is a system of n equations that can be expressed in matrix notation as defined: 

𝑦 = 𝑋𝛽 + 𝜀    

We desire to obtain the vector of least squares estimator, 𝛽̂, that minimizes the error sums of 

squares (SSE). 

Using 𝑦 = 𝑋𝛽 + 𝜀 , make 𝜀 the subject of formular 

𝜀 = 𝑦 − 𝑋𝛽    

The sum of squares of SSE 

𝐿 = ∑ 𝜀𝑖
2𝑛

𝑖=1 = 𝜀′𝜀 = (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽)        (3) 

The least squares estimator 𝛽̂ is the solution for β in the equations 
𝜕𝐿

𝜕𝛽
= 0  

𝜀′𝜀 = (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽)  
𝑦′𝑦 − 𝑦′𝑋𝛽 − 𝑋′𝛽′𝑦 + 𝑋′𝛽′𝑋𝛽    

𝑦′𝑦 − 𝑦′𝑋𝛽 − 𝑦′𝑋𝛽 + 𝑋′𝛽′𝑋𝛽    
𝜕𝜀′𝜀

𝜕𝛽
= 0 → −𝑦′𝑋 − 𝑦′𝑋 + 2𝑋′𝑋𝛽  

−2𝑋′𝑦 + 2𝑋′𝑋𝛽 = 0  

2𝑋′𝑋𝛽 = 2𝑋′𝑦  

𝑋′𝑋𝛽 = 𝑋′𝑦  

𝛽 =
𝑋′𝑦

𝑋′𝑋
  

𝛽̂ = (𝑋′𝑋)−′𝑋′𝑌     
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𝛽̂ = (𝑋′𝑋)−′𝑋′𝑌 = 

(

 

𝛽̂0
𝛽̂1
⋮
𝛽̂𝑘)

          (4) 

 

3. RESULTS AND DISCUSSION 

 
Figure 1: X-bar control chart for Tensile Strength 

 

The result presented in Figure 1 indicates that 

the process is in statistical control. All data 

points remain within the established Upper 

Control Limit (74.83497 MPa) and Lower 

Control Limit (67.78723 MPa). The chart 

explicitly states that no individual data points 

have exceeded the control limits, nor have 

any non-random patterns (such as trends, 

shifts, or unusual sequences of points) been 

detected. The process operates around a 

stable center of 71.3111 MPa with a standard 

deviation of 1.66117, suggesting that all 

observed variation is attributable to common 

causes inherent to the process. Therefore, the 

tensile strength process is currently stable 

and predictable, performing consistently 

within its expected range. 

 

 
Figure 2: X-bar control chart for Surface Quality Score 
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In figure 2, the control chart for Surface 

Quality Score indicates that the process is out 

of statistical control. While no points exceed 

the Upper Control Limit (13.40889) or Lower 

Control Limit (11.15291), the crucial 

observation is "Number violating runs = 3." 

This means three distinct non-random 

patterns, highlighted by the orange data 

points, have been detected. These run 

violations suggest the presence of special 

causes of variation within the process, such 

as shifts or trends, that are not due to 

common, inherent process variability. The 

current state of the process is unstable and 

unpredictable, necessitating investigation 

and corrective action to identify and 

eliminate these special causes and bring the 

surface quality score back into a state of 

statistical control. 

 

 
Figure 3: X-bar control chart for Dimensional Precision 

The result in figure 3 indicates that the 

process in statistical control. With the data 

analyzed, all data points are observed to be 

within the established Upper Control Limit 

(1.26758 mm) and Lower Control Limit 

(0.9588601 mm). Crucially, the chart reports 

no individual data points have exceeded the 

control limits and no non-random patterns 

(such as trends, shifts, or unusual sequences 

of points) have been detected. The process 

operates around a stable center of 1.11322 

mm with a standard deviation of 0.07276596, 

implying that all observed variation is 

attributable to common causes inherent to the 

process. Therefore, the dimensional precision 

is currently stable and predictable, operating 

consistently within its expected range. 

Table 1: Regression analysis on predicting tensile strength 
Predictor Estimate Std. Error t value Pr(>|t|) VIF 

(Intercept) 46.1757 3.349 13.788 < 2e-16 
 

Additive Level 0.5229 0.0703 7.438 4.98E-11 1.005654 

Melt Temperature 0.1234 0.0109 11.323 < 2e-16 1.037762 

Injection Speed -0.0963 0.0215 -4.473 2.18E-05 1.048163 

Mold Temperature 0.0272 0.0239 1.138 0.258 1.06672 

Cooling Time 0.0065 0.0347 0.187 0.852 1.099103 

Ambient Temperature -0.0549 0.0558 -0.984 0.327 1.044089 

R-Squared 0.6798 
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The regression results in table 1 reveal that 

additive level, melt temperature, and 

injection speed are statistically significant 

predictors of tensile strength in plastic bottle 

production, with p-values far below 0.001. 

Specifically, a unit increase in additive level 

and melt temperature leads to an increase in 

tensile strength, while a higher injection 

speed slightly decreases it. Mold 

temperature, cooling time, and ambient 

temperature were not statistically significant 

(p > 0.05), implying they contribute little 

explanatory power in this model. The high 

adjusted R² of 0.6592 indicates that over 65% 

of the variability in tensile strength is 

explained by the input variables. All VIF 

values are below 1.1, confirming no 

significant multicollinearity among 

predictors.  

 

Table 2: Regression analysis on predicting Surface Quality Score 
Predictor Estimate Std. Error t value Pr(>|t|) VIF 

(Intercept) 9.635341 1.477383 6.522 3.57E-09 
 

Additive Level -0.1146 0.031016 -3.695 0.000372 1.005654 

Melt Temperature 0.003898 0.004807 0.811 0.419529 1.037762 

Injection Speed -0.00581 0.009497 -0.612 0.542009 1.048163 

Mold Temperature 0.045487 0.010536 4.317 3.94E-05 1.06672 

Cooling Time -0.03 0.015322 -1.958 0.053272 1.099103 

Ambient Temperature 0.012163 0.024609 0.494 0.622302 1.044089 

R-Squared 0.2749 
    

 

The regression model in Table 2 examines 

how six process inputs influence the surface 

quality score of plastic bottles. The model has 

an R-squared value of 0.2749, meaning 

approximately 27.5% of the variability in 

surface quality is explained by the selected 

predictors. The F-statistic (5.875, p = 3.144e-

05) indicates the overall model is statistically 

significant. Among the predictors, additive 

level (estimate = -0.1146, p = 0.000372) and 

mold temperature (estimate = 0.0455, p = 

3.94e-05) have statistically significant 

effects, with the former negatively and the 

latter positively affecting surface quality. 

Cooling time is nearly significant (p = 0.053), 

suggesting a potential minor influence. Other 

variables like melt temperature, injection 

speed, and ambient temperature are not 

statistically significant (p > 0.05). All 

variance inflation factors (VIFs) are below 

1.1, indicating no multicollinearity concerns.  

Table 3: Regression analysis on predicting Dimensional Precision 
Predictor Estimate Std. Error t value Pr(>|t|) VIF 

(Intercept) 1.049896 0.144824 7.249 1.21E-10 
 

Additive Level -0.00296 0.00304 -0.973 0.3331 1.005654 

Melt Temperature 0.00087 0.000471 1.846 0.0681 1.037762 

Injection Speed 0.007762 0.000931 8.337 6.66E-13 1.048163 

Mold Temperature -0.00669 0.001033 -6.479 4.34E-09 1.06672 

Cooling Time 0.001121 0.001502 0.746 0.4575 1.099103 

Ambient Temperature -0.00231 0.002412 -0.96 0.3398 1.044089 

R-Squared 0.5842 
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The regression model in Table 3 for 

Dimensional Precision demonstrates a strong 

explanatory power, with an R-squared of 

0.5842, indicating that approximately 58.4% 

of the variation in dimensional precision is 

accounted for by the input variables. The 

model is statistically significant overall (F-

statistic = 21.78, p < 0.0001). Among the 

predictors, injection speed has the most 

significant positive influence (p < 0.0001), 

implying that increasing injection speed 

enhances dimensional precision, while mold 

temperature shows a significant negative 

effect (p < 0.0001), indicating that higher 

mold temperatures may reduce dimensional 

accuracy. Melt Temperature has a weak, 

borderline positive effect (p ≈ 0.068), 

whereas additive level, cooling time, and 

ambient temperature do not significantly 

impact dimensional precision (p > 0.3). All 

VIFs are below 1.1, confirming no 

multicollinearity, and supporting the 

reliability of the estimates.  

Regression-Control Chart Sensitivity 

Analysis 

To demonstrate the value of using a 

regression model to enhance product quality, 

we focused on the Surface Quality Score, 

which the control chart indicated was subject 

to potential special cause variation. The 

regression analysis identified additive level, 

mold temperature, and possibly cooling time 

as significant influencers of surface quality. 

To validate this, we conducted a sensitivity 

analysis using optimized values: an additive 

level of 1.5%, mold temperature of 75°C, and 

cooling time of 20 seconds, while allowing 

other process variables to remain at their 

current operational levels. The predicted 

surface quality score improved to 

approximately 12.275, which closely aligns 

with the control chart’s center line of 12.28. 

This result confirms that the regression 

model is effective and practical for guiding 

process adjustments to optimize product 

quality. 

4. CONCLUSION 

The integration of regression analysis with 

statistical process control proves to be a 

powerful approach for quality monitoring 

and optimization in plastic bottle 

manufacturing. This study has shown that 

regression models not only identify the most 

influential process variables, such as additive 

level, mold temperature, and injection speed, 

but also guide actionable adjustments that 

can align quality outcomes with control chart 

expectations. For instance, regression 

analysis highlighted significant contributors 

to variation in surface quality, and sensitivity 

analysis confirmed that appropriate tuning of 

these inputs can restore process control. 

Furthermore, the use of X̄ charts provided 

early detection of potential process 

instabilities, while regression quantified their 

causes. The absence of multicollinearity and 

the relatively high R-squared values across 

the models support the robustness of the 

analysis. This evidence affirms that 

regression modeling is a valuable tool in 

modern quality control, enabling data-driven 

decision-making and continuous 

improvement in production environments. 
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