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Abstract 

Issues in utility theory ranking and economics of insurance, involve certainty equivalent value 

and Arrow Pratt aversion as the main target of choosing between different alternative investment 

options and a metric for cost-effective investment decisions. The conventional certainty method 

addresses the ranking of investment with a desired high level precision. Further, conditions for 

consistent approximations of certainty equivalence and risk aversion of interest by Taylor’s 

method are presented. The presentation is direct so as to give room for easy understanding of the 

theme justifying that Taylor’s scheme offers an edge over other methods. In this paper an 

analytic procedure used in calculating certainty equivalence employing the tool of risk aversion 

is considered by subjecting the minimum premium of insurer to analyticity testing and then solve 

the equation    wYwUE  

 for the minimum premium  the insurer is ready to impose 

on the insured. The resulting solution is found to be integral of the form  




  dyyyfY .  

Keywords: Aversion, utility, expectation, certainty equivalence 

 

 

1. Introduction 

In mathematics of insurance market, the 

expected utility criterion is usually 

employed to order investment alternative 

decision but it does not have a very sound 

actuarial basis for using it as a ranking scale. 

It is just a real number which assumes a 

value hence there is a need for an alternative 

ranking method founded on probability 

distribution basis having power of certainty 

value. In Fishburn (1989); Fishburn and 

Walker P (1995), it was apparent that the 

expected utility theory is a mathematical 

tool which the insured uses to choose 

between two risky insured investments by 

contrasting the expected utilities and this is 

what prompted Davis; Hands; Maki; 

London; Elgar (1987) to define expected 

utility as the product of the respective 

probability values and the weighted sums 

derived by summing the utilities over all 

outcomes. The insurance underwriting is a 

very complex procedure of combining 

underwriting and investment decisions the 

performance of which is critical to all 

stakeholders and hence risk managers must 

be decisive enough before earned premium 

income is invested. The efficient ranking of 

different investments is a critical problem in 
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insurance and financial applications which 

must be addressed within actuarial 

framework. The methodology of expected 

utility theory which does not provide sound 

actuarial basis for justification informs the 

decision of actuarial risk experts to dig for 

an alternative technique which employs 

certainty using probability distribution 

defined over the outcomes and utilities as 

the most appropriate. Friedmann and Savage 

(1952) both keenly observe that provided 

that if policy holders realize a few 

elementary rules of behaviour such as 

certainty equivalence, then risk preferences 

can be expressed rationally. The theory of 

certainty equivalence scheme in principle is 

not only applicable to financial models but 

can be extended to critical areas of actuarial 

literature.  

In Carol (2008), McCutcheon and Scott 

(1986), Wilmott (2007) one can observe 

which insurance portfolio available to an 

insurer is regarded as optimal apparently 

relies on the perceived attitude to risk and 

trade-off between risks and return, hence an 

insured that is very averse to taking risks 

simply suggests that he is more likely to 

choose a low return and low risk portfolio 

over a high risk and high return portfolio. To 

formulate the choice of optimal insurance 

portfolio in an actuarial framework and find 

a unique mathematical solution, it is 

pertinent that the preferences of an investor 

be defined in terms of utility function the 

phenomenon which aptly describes an 

investor’s attitude to risk. For an insurer to 

stay competitive and hedge against total 

failure, the need for thorough and careful 

examination from a mathematical point of 

view is fundamental. An analytical model 

formulation is of considerable value but with 

more complicated models which are 

increasingly involved and technically 

demanding, the search for an analytical 

answer to premium pricing and hedging 

problems could be extremely challenging 

and the only possibility is to resort to 

numerical procedures. This paper is 

anchored on numerical methods applied to 

problems in mathematics of risk theory.  

 

2. Theoretical Background and 

Applications  

This paper covers critical areas in insurance 

risk mathematics such as certainty 

equivalence, risk aversion. The numerical 

methods are varying; differential co-

efficient, Taylor’s theorem and numerical 

limit theorems are all used where applicable. 

While the expected utility can be used to 

order investment alternatives, it is not as 

good ranking measurement scale as certainty 

equivalence. To start with, there is need to 

compute the certainty equivalence function 

defined by U(c) = E(U(X)). There exists a 

certain equivalent function such that an 

investor is indifferent between uncertain and 

a certain equivalent value. An investment I 

may be described by a probability 

distribution function over a set of associated 

outcomes or utilities with all possible 

outcomes so that if u(wj), j = 1,2,3,…,n be a 

sequence of utility functions having 

probabilities pj, so that E[u(w)] = 

∑ u(wj)pj 
𝑛
1 . I describes an investment 

whose utility function has been given as  

u(w) = f(w) and the distribution is further 

defined by u(CeI)  = E(U(I)) =  ∑ u(wj)pj 
𝑛
1 .  

We consider the distribution given below for 

N investments. 
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Table 1: Probability Distribution for N Investments 

U(w) 𝐰𝟏 𝐰𝟐 𝐰𝟑 𝐰𝟒 . 𝐰𝐧−𝟐 𝐰𝐧−𝟏 𝐰𝐧 

Pr(investmentG1) α11 α12 α13 α14 . α1(n−2) α1(n−1) α1n 

Pr(investmentG2) α21 α22 α23 α24 . α2(n−2) α2(n−1) α2n 

Pr(investmentG3) α31 α32 α33 α34 . α3(n−2) α3(n−1) α3n 

.         

.         

Pr(investment

G(N−1)) 

α(N−1)1 α(N−1)2 α(N−1)3 α(N−1)4 . α(N−1)(n−2) α(N−1)(n−1) α(N−1)n 

Pr(investmentGN) αN1 αN2 αN3 αN4 . αN(n−2) αN(n−1) αNn 

 

1α...ααα
n

1j

nj

n

1j

3j

n

1j

2j

n

1j

1j  


 

For mjnj αα   

   1nn1331221111 αw...αwαwαwGUE   

   2nn2332222112 αw...αwαwαwGUE   

   3nn3333223113 αw...αwαwαwGUE   

. 

.  

. 

   NnnN33N22N11N αw...αwαwαwGUE   

Since    ,wfwu  then    ee cfcu   

  1nn1331221111e αw...αwαwαwGcf   solving for certainty equivalence, we have 

 1nn133122111

1

1e αw...αwαwαwfGc    certainty equivalence for G1 

  knnk33k22k11ke αw...αwαwαwGcf   

 knnk33k22k11

1

ke αw...αwαwαwfGc    

If     knnk33k22k11

1

1nn133122111

1 αw...αwαwαwfαw...αwαwαwf     

implies G1 is preferred to Gk, otherwise Gk is preferred. Often times, we determine preference by 

computing  knnk33k22k11

1

ke αw...αwαwαwmaxfGcmax   . However, when equality 

occurs, then    knnk33k22k11

1

1nn133122111

1 αw...αwαwαwfαw...αwαwαwf    

preference goes to either of them. Although, both the certainty equivalence and expected utility 

are numbers that are used in ranking investments, certainty equivalence is better since it is based 

on probability making it more intuitive in interpretation than expected utility 
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A utility function RP:u   is the expected utility if ,  utility values  n321 u,...,u,u,u  for each 

of the n outcomes in  n321 x,...,x,x,x such that for every p in P ,    


n

1i iiupPU  

It can be inferred from the properties of utility function that  PU  is linear in probability  

        2121 pUδ1pδUpδ1δpu  . If an insured decision to insure or not is described by 

the expected utility function, then the insured payoff can be underpinned over uncertain outcome

 n321 x,...,x,x,x .  

 

2.1 Theorem 1 

If   PU  is linear in probability and         2121 pUδ1pδUpδ1δpu   holds, then it has 

expected utility functional form. 

Proof 

The condition         2121 pUδ1pδUpδ1δpu   confirms that U(.) is a linear functional 

       



n

1i

i2i

n

1i

i1i21 upδ1upδpUδ1pδU  

        



n

1i

i2ii1i21 upδ1uδppUδ1pδU  

Since 1δ0  , choose 0.5,δ        



n

1i

i2ii1i21 up5.0u0.5ppU5.0p0.5U  

     



n

1i

i2ii1i21 upup5.0pU5.0p0.5U  

      1esult .........R,.........u pu pppUpU i

n

1i

ii

n

1i

2i1i21 


  

2i1ii ppp  ,  

hence the proof  

Now suppose 

   xXPrxFX   be the probability of receiving less than or equal to x 

     dxxfxuFU X




 ,  

If  dxxxfE(F) X




 is the expected value of the function F(.) and E(F)ψ is the functional which 

gives  dxxxfX




for certain, then the insured will prefer E(F)ψ  to F(.). Therefore 

        FEUdxxxfudxxfxu XX 













 









 would then be the risk aversion for all  xfX .  
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Abouda and Farhoud (2010) define risk 

aversion as an attempt to choose between 

alternatives when clearly feasible so as to 

avoid risk. According to the authors a weak 

risk averse potential policy holder would 

prefer a random risk Y whose certainty of 

the expected value is E(Y) however in 

Rothschild and Stiglitz (1970), it was 

observed that a strong risk aversion will 

describe an aversion towards the average 

preserving spreads. Machina (1982) also is 

of the opinion that a policy holder with 

everywhere concave local utility functional 

should meet the conditions of the preference 

ordering of second order stochastic 

dominance but would be strictly worse off 

due to the inclusion of independent 

underlying risk. To Quiggin ((2003), 

however, in a wide range of risk averse 

preferences generated from other models 

under uncertainty, independent risks are 

complementary where aversion to a risk will 

diminish under the presence of an 

independent underlying risk hence reactions 

of a risk averse policy holder with expected 

utility preference to the inclusion of 

independent underlying risk makes it a 

critical area which requiring serious 

attention. A possible consequence of the 

author’s work falling in line with the 

concept of risk aversion is that the inclusion 

of independent risk will decline welfare and 

that additional risk will be worse off.  

II Certainty Equivalence of Risk 

Aversion 

Let X define the insured risk, then it 

becomes a random variable, For every X, 

there is a value  Xcc  , the certainty 

equivalence such that Xc  where a policy 

holder is indifferent to either insure or not. 

From the point of view of the insured, the 

number c describes the correct price of X. 

From above, it should be stated that c is not 

a random number. Therefore  

         XuEcuEXucu   and by the 

requirement that c is not a random variable 

       XEuXuEcu   by Jensen’s 

inequality. 

 xu  is concave in an interval O if for the 

numbers 21 x,x  in O and for 1α0   

        2121 xα1αxuxuα1xαu  . 

Substitute 0.5α   

     2121 x5.00.5xuxu5.0x0.5u   

Rotar (2007) defines aversion as 

 









0.5yprobabilitδ,

0.5yProbabilitδ,
xAδ  

 xfX and  af
δA are the probability densities 

of random variables X and  xAδ . The risk 

random variables X and aversion  xAδ   are 

assumed independent. 

              dxxfdaafaxudxdaafxfaxuAXuE XAAXδ δδ   






























 

             δx0.5uδx0.5uEdxxfδx0.5uδx0.5uAXuE Xδ  



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  δAXuE  ≤   XuE and hence

XAX δ 
 

 It is apparent here that the 

increase in inequality associated with a 

given source of inequality is reduced in the 

presence of other statistically independent 

source of inequality.  

 

2.2 Theorem 2 

Suppose X is a random variable, then 

U(μx) − 0.5 (C. V)2μx
2U′(μx) a(μx) ≤

  XEU   where  C.V is the co-efficient of 

variation, where a(μx) is the aversion 

coefficient.      XuEcu   

Proof  

 xU  =  xμU  +     x

1 μxxU   + 

    
!2

μxxU
2

x

2 
 +

    
!3

μxxU
3

x

3 
+

    
!4

μxxU
4

x

4 
 

+ ….+
    

 !1n

μxxU
1n

x

1-n






 +

    
   1oXEX,

n!

μxxU k
n

x

n




 for k 

≥ 3 where o(1) is function which vanishes. 

 xU  ≅  xμU  +     x

1 μxxU   + 

    
!2

μxxU
2

x

2 
+0+0+…  

 xU  ≅  xμU  +     x

1 μxxU   + 

    
!2

μxxU
2

x

2 
 

  xμxE  ,    x
2σxvar   

Taking mathematical expectation of both 

sides, we have  

 xEU  ≅  xμEU  +     x

1 μxxUE   + 

     
!2

μxxUE
2

x

2 
 

 xU  ≅  xμU  +      x

1 μxExU   + 

      
!2

μxExU
2

x

2 
 

 xU  ≅  xμU  +     x

1 μExxU   + 

      
!2

μxExU
2

x

2 
 

 xU  ≅  xμU  +      xx

1 μμxU   + 

      
!2

μxExU
2

x

2 
 

 cU  ≅  xμU  + 
      

!2

μxExU
2

x

2 
 

 cU  ≅  xμU  +    x
22 σxU5.0  

The aversion in terms of second and first 

derivatives is defined as  xa   =
   
   xU

xU
1

2

    

⇒   xU 2  =      xaxU 1  

While the relative aversion is  xr   =

   
   xU

xxU
1

2

   ⇒   xU 2  =
     

x

xrxU 1

  

By substituting  xE  into   xU 2  =

     xaxU 1  we have 

    xEU 2  =        xEaxEU 1  

  x

2 μU  =     xx

1 μaμU  

 cU  ≅  xμU       x
2

xx

1 σμaμU5.0  
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The co-efficient of variation
x

x

μ

σ
CV   

 cU  ≅  xμU        x
22

xx

1 μCVμaμ0.5U  

Recall that     XuEcu   and by Jensen’s 

inequality      XEuXuE  , hence  

 xμU  

        2.Result ..........,.........xEμCVμaμ0.5U
2

x

2

xx

1 

 

This result is of high degree of interest with 

respect to inequality where analyticity 

testing is finally anchored on Jensen’s 

inequality displaying the homothetic 

property of aversion risk. 

 

III Minimum Premium for any Risk 

From the theoretical point of view, 

insurance premium can be viewed from two 

opposing sides. The insurer will attempt to 

charge the minimum premium while the 

policy holder is comfortable with the 

maximum amount he can afford to pay. For 

any risk Y while ignoring additional costs, a 

premium E[Y] will be sufficient.  

 

2.3 Theorem 3 

The solution to equation 

   wYwUE    is integral and 

defines the minimum mean the insurer 

imposes on the insured  

Proof 

      
    

or,
2!

ywu
ywuywuywU

22

1 





 

      
  




 

2!

yμμwua
yμμwuaμwaubywaU

2

yy1

yyy

 

        
    2

yy

yyy
!2

μμwuΣa
μμwuΣaμwuΣa

y
y








+ 

 

        
    

b
4

yμμwua
yμμwu0.5aμwu0.5a

2

yy

21

yy

21

y

21 

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  we take mathematical expectation of left 

hand side alone to obtain,  
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as we let u(k)(w −  μY) → o(1), k ≥ 2    

since naturally u(k)(w −  μY) all vanish for 

a linear utility function    

      wμwuEΣμwEu yy  
 

u(w −  μY) + ( Σ−)u′(w −  μY) =  w, a has 

cancelling out. 

u′(w −  μY) = k for linear utility function, 

u(w −  μY) is of the form bw + a =  

w −  μY 

 w −  μY + k Σ−   =  w  ⇒ 

− μY +  kΣ−  = 0 and the result follows if k 

=1 

 Σ−  =   μY  ⇒ 

 Σ−  = 

  3esult .........R....................,.........dyyyf
0

Y


  

is the solution and defines the minimum 

premium the insurance company will charge 

the insured. This also defines the 

mathematical expectation of the distribution 

for the risk  

If  Σ−= E(Y) then, E(w) =  Σ−. Utility 

function of the form u(w) = w is referred to 

as risk neutral and an insurer associated with 

it is a risk neutral investor.  

E[U(w)]  = U(c), the expectation of a utility 

function is a constant resulting by equating 

the expectation to the original utility 

functional form and solving for c. 

 

IV Aversion Criterion for Standard Utility 

Functions  

Unless we know the mathematical 

expectation and the variance of random 

variables Y for quadratic, logarithmic, 

power and linear transform utility function, 

we may not be able to compute their 

certainty equivalents. In particular the first 

two utility functions discussed possess 

striking properties. 

 

Exponential Utility Functions 

μY =  
1

α
  ,  σ2

y  = 
1

α2 

u(w)  =  − αe−αw,  u(μY) =  −αe−αμY 

u′(w)  = α2e−αw, u′(μY)  = α2e−αμY 

u′′(w) = −α3e−αw,  u′′(μY)  = −α3e−αμY 

a(μY)  =    
−u′′(w)

u′(w)
  =  

α3

α2
   = α > 0 , can re-

written as α = 
1

β
 

U(c)  ≅ U(μy)−0.5U′(μy) a(μx)σ2
y 
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U(c)  ≅ − αe−αμY  + 
−0.5α3e−αμ𝑦

α2
 = − αe−αμY 

−0.5α3e−αμY, but 

U(c)  = −αe−αc 

−αe−αc =  − αe−αμY −0.5α3e−αμY 

e−αc =  e−αμY + 0.5α2 e−αμY 

eαμY−αc = 1 + 0.5α2, thus expanding the left 

hand side up to second order  

1 + αμY − αc + 0.5(αμY − αc)2 ≅ 1 + 0.5α2 

1 + αμY − αc  + 0.5(α2μY
2 + α2c2  − 

2μYα2c ) ≅  1 + 0.5α2  

1 + αμY − αc  + 0.5α2μY
2 + 0.5α2c2  − 

μYα2c  ≅  1 + 0.5α2,   

0.5α2c2  − (μYα2 +  α)c + αμY  + 0.5α2μY
2 

− 0.5α2 = 0  

     
2

22
Y

2

Y

222

Y

2

Y

α

0.5αα0.5μαμ2αααμααμ
c




  

     
t4.....Resul..........,.........

α

α1ααμ

α

α1αααμ

α

ααααμ
c

22

Y

2

22

Y

2

422

Y 








Table 2: Probability Distribution 2 for Risk Y 

Y 𝐘𝟏 𝐘𝟐 𝐘𝟑 𝐘𝟒 . 𝐘𝐧−𝟐 𝐘𝐧−𝟏 𝐘𝐧 

Probability α11 α12 α13 α14 . α1(n−2) α1(n−1) α1n 

 

E(Y) = α11Y1 + α12Y2 + α13Y3 + α14Y4 +….+ α1(n−1)Y(n−1) + α1nYn  =  ∑ α1kYk
n
1  

E(Y2) = α11Y1
2 + α12Y2

2 + α13Y3
2 + α14Y4

2 +….+ α1(n−1)Y(n−1}
2 + α1nYn

2 =  ∑ α1k
n
1 Yk

2 

σ2
Y = E(Y2) − [E(Y)]2  =  ∑ α1k

n
1 Yk

2 −  (∑ α1kYk
2𝑛

1 )2 

U(c)  ≅ U(∑ α1kYk
n
1 )−0.5U′(∑ α1kYk

n
1 ) a(∑ α1kYk

n
1 ) {∑ α1k

n
1 Yk

2 − (∑ α1kYk
2𝑛

1 )2}  

Hara Utility Function 

U(w)  =  
(w+c)α

α
 ,  y > −c  and 0  < α  < 1 

u(μY)  =  
(μY+c)α

α
   

u′(w)  =  (w + c)α−1,  u′(μY)  = (μY + c)α−1 

u′′(w)  =  (α − 1)(w + c)α−2 ,  u′′(w)  =  (α − 1)(μY + c)α−2 

a(w, μY)  =   
−u′′(w)

u′(w)
  =  

−(α−1)(μY+c)α−2

(μY+c)α−1   =  −(α − 1)(μY + c)−1 =  
−(α−1)

(μY+c)
 

 

Property of Hara Utility Function 

We cannot absolutely divorce utility 

function from regular varying functions, in 

particular, the HARA utility function since a 

few heavy tailed distributions are the 

distributions with regularly varying tail 

distributions. 

 

2.4 Theorem 4 

HARA utility function is regularly varying  

Proof 

By definition the positive, measurable utility 

function U(w) will be called regularly 

varying as  
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w → ∞ with real index α of variation, if  

limw → ∞
U(γw)

u(w)
 = γα exists  for any γ > 0. If  

α = o(1), then u(w) is a slowly varying 

function.  

U(w)  =  
(w+c)α

α
 , 

U(γw) =  
(γw+c)α

α
 

U(γw)

U(w)
  = 

(γw+c)α

(w+c)α   =  {
(γw+c)

(w+c)
}

α

  =  (γ +

 
c−γc

w+c
)

α

   

Let Y = (γ +  
c−γc

w+c
)

α

  

Y
1

α  =  (γ +  
c−γc

w+c
)  

limw → ∞ Y
1

α  = limw → ∞ (γ +  
c−γc

w+c
)  

Y
1

α  =  γ 

Y  =  γα  

Y = 
U(γw)

U(w)
   = γα 

 

Quadratic Utility Function 

u(w)  = −(α − w)2,   w <  α  and 

U(w) = 0 if  w  > α 

u(μY)  = −(α − μY)2 ,   

u′(w) = 2(α − w),  u′(μY) = 2(α − μY) 

u′′(w) = −2 ,  u′′(μY) = −2   

a(μY)  =    
−u′′(μY)

u′(μY)
  =  

2

2(α−μY)
  =  

1

(α−μY)
 

 

Logarithmic Utility Function  

u(w)  =  log𝑒(α + w) 

u(μY) = log𝑒(α + μY),  

u′(w) = 
1

(α+w)
  =  (α + w)−1, u′(μY)  = 

(α + μY)−1, 

u′′(w) = −(α + w)−2,  u′′(μY) = −(α +

μY)−2 

a(w, μY)  =    
−u′′(w)

u′(w)
  =  

(α+μY)−2

(α+μY)−1,
   =  

1

α+μY
 ,  

α > −μY 

 

Power Utility Function 

u(w)  = wc  =  eclogew    0 < c < 1 

u(μY) = μY
c  =  eclogeμY 

u′(w)   =  
c

w
 eclogew = cwc−1 

u′(μY)  =  
c

μY
 eclogeμY = cμY

c−1 

u′′(w)  =  c(c−1)wc−2 

u′′(μY) =  c(c−1)μY
c−2 

a(w, μY)  =   
−u′′(w)

u′(w)
  =  

c(c−1)μY
c−2

cμY
c−1   = 

(c−1)μY
c−2

μY
c−1    = (c − 1)μY

−1  

For exponential utility, a(w)  = α, but one 

can assume this to be of the form  
1

β
 

For quadratic  a(w) =  
1

(α−μY)
 

For logarithm a(w) =  
1

α+μY
 

For power utility a(w) = 
(c−1)

μY
 

A keen observation of the aversion co-

efficient of all the standard utility functions 

shows that they are of the form a(y) = 

(a +  by)−1, and taking reciprocals of both 

sides,   
1

a(y)
 =  a + by  ⇒ 

ABRT(y) = a + by implying absolute risk 

tolerance is of linear form and hence 

represents a risk neutral function. 

 

Conclusion 

This paper examines certainty equivalence 

of risk aversion. An upper bound has been 

constructed for the certainty  cU  by the 

conditions of Jensen’s inequality where the 

aversion co-efficient has been embedded in 

the presence of co-efficient of variation. To 

test the efficacy of the certainty 

approximation, it was applied on continuous 
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exponential utility functional employing 

approximate algorithmwhere the certainty is 

found to be, 
 

α

α1ααμ
c

22

Y 
 . 

However, the minimum premium which the 

insurance manager will charge has been 

proved by the use of Taylor’s expansion to 

be  


 
0

Y dyyyf which interestingly is 

the expected value of risk Y.  
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