FUPRE Journal of Scientific and Industrial Research Vol.1 (1), 2017 ISSN: 2579:1184 (Print) ISSN:2579-1129 (Online)

#### Artificial Neural Network Simulation Model for Predicting Oil and Gas Pipeline Corrosion Rate in Nigerian Niger Delta

#### Obaseki, M, Nwankwojike B. N and Abam, F.I

Department of Mechanical Engineering, Michael Okpara University of Agriculture, Umudike obasekimartins@gmail.com; jikeobodo@gmail.com; abamo124@gmail.com

#### **Abstract:**

This study appraised the significance of all the factors affecting corrosion of oil and gas pipeline in Niger Delta region of Nigerian using artificial neutral network (ANN) technique in order to ascertain the root cause of incessant unexpected pipe failure in this region. Operational and process data of sixty oil and gas transmission pipelines used by six oil and gas companies from 2000 to 2010 for onshore and offshore applications at different oil and gas fields located in this region were sampled and used for both ANN model development and parametric analysis. Results revealed that the predictions of ANN simulation developed in this study which approximates the actual corrosion rates by over 99% are greater than those of conventional De-Waard based simulations presently used by most Nigerian oil and gas companies. Thus, the inadequate prediction of oil and gas pipeline corrosion rate resulting to incessant unexpected pipeline failure in this region. Parametric analysis of the model showed that corrosion rate of carbon steel pipelines used for oil and gas transportation in this region varies linearly with temperature, flow pressure, CO<sub>2</sub> partial pressure, pipe length and pH value while the effects of the pipe age, flow velocity, density, viscosity, chloride sand flow and pipe diameter are non-linear. The used of models/simulations whose predictions are relatively less than the actual corrosion rate of oil and gas pipeline by Nigerian oil and gas companies should be discouraged in order to eliminate catastrophic pipeline failure and its resulting oil spillage/environmental degradation in this region.

#### Keywords: Artificial Neural Network, Corrosion, Oil and Gas Pipeline, Prediction

#### Introduction

Pipelines used in oil and gas sector can be made of metallic alloys or plastics but carbon steel pipes remains the best means of transporting oil and gas due to its favourable thermo-mechanical properties(Akano et al, 2017). However. apart from design/structural, limitations and mechanical damages that are avoidable, carbon steel pipes used in oil and gas sector are prone to corrosion which is apparently impossible to prevent due to prevailing aqueous environment of this sector(IIman and Kusmono, 2014). Thus, various means of appraisal and prediction of corrosion mechanisms/rate in oil and gas pipeline such

as inspection, monitoring and computer modeling techniques are highly valued even forensic evaluations/mitigation though method (coating-painting and cathodic protection) remains an integral part of menace. combating Although this inspections and monitoring using highresolution magnetic flux, sensors or ultrasonic tools can provide valuable information regarding past and present exposure conditions, these methods can neither predict the remaining life of the pipe provide in-depth evaluation nor of mechanisms of corrosion growth directly except computer or simulation models can

do this (Giulia et al, 2014). However, unexpected pipe failure and high maintenance cost resulting from replacement of pipes that are not due for replacement still persists in Niger Delta region of Nigeria, numerous simulation despite models developed analyzing oil and gas pipeline behavior under corrosion. This is because none of existing modified De-Waard based simulations used by most oil companies in this region accounts for all relevant variables that influence corrosion of carbon steel pipeline. In addition, some of the simulations considered response variables of pipeline corrosion such as defect depth and length as predictors, thereby hindering analysis/prediction of corrosion rate before the process starts. This adversely affects decision during system design, which results to uncontrollable life cycle cost.

DeWaard and Milliams (1975), modeled rate of oil and gas pipeline corrosion as a function of temperature and CO<sub>2</sub> partial pressure, which was later improved to accounts for flow velocity and diameter of pipe by DeWaard and Lotz (1995). Ossai, (2012) improved on the previous by introducing pH value of the pipe's environment. Nesic et al. (2005) is limited to prediction of internal corrosion rate of oil and gas pipes as a function of hydrogen sulphide (H<sub>2</sub>S), water entrainment in multiphase flow and corrosion inhibition of crude oil component making it unreliable for holistic management of corrosion in this sector. Also, the neuro-fuzzy model of Akano et al (2017), which established corrosion rate as a function of pipe burial depth, soil type, pH, temperature and moisture content is limited lithospheric application. function Although, the developed for predicting corrosion rate of oil and gas pipeline by Norsok (2005), considered the effects of temperature, CO<sub>2</sub> partial pressure, pH and shear stress of the pipe, the temperature range assumed in this

work is not realistic in all environment and flow parameters of the fluid transported were not considered. Thus, Iyasele and Ntunde (2016), modified Norsok M-506 algorithm to include the effects of heat capacity, fluid density, fluid velocity, internal diameter, heat transfer coefficient, inlet temperature, surrounding temperature, total pipe length, pipe thickness, system pressure, oil flow rate, inhibitor efficiency, and water volume flow rate without considering effects sand deposits and pipe age. Netto et al (2005) and Gatekeeper (2014) showed that sand flow rate increases localized corrosion growth in oil and gas pipeline while Woldeyohannes and Majid (2011) revealed that pipeline age affects its performance. Thus, the high rate of unpredictable pipe failure resulting to incessant accident/loss of life, products wastes, environmental pollution and high operational cost pipeline facilities in this region.

Therefore, the need for the best means of quantifying the combined effects of all the predicting factors affecting oil and gas pipeline corrosion in this region to enable effective assessment of the significance of each predictor's influence on the pipe's corrosion rate as it interacts with others. Most modern parametric investigations such as this that are not easily expressed in a traditional computer algorithm using rulebased programming usually lend themselves to artificial neural network (ANN) modeling because of its outstanding feature of fitting complex nonlinear interactions between systems inputs and outputs (Bassam et al, 2009). Although, the recent efforts of Kexi et al (2012), Mohammed et al (2014), Din et al (2015), and others in the development of models for effective prediction of pipeline corrosion rate using ANN technique cannot overemphasized. be none of them comprehensively considered all the predicting factors of this corrosion process

in Niger Delta region. In addition, application of model for predicting rate of corrosion in structural steel tower developed by Din et al (2015) is limited because its prediction capability depends on corrosion indicators and precision of measuring devices (defect depth, defect length, width, orientation, and odometer) instead of its origin. Hence, the objective of this study is to appraise the significant of factors affecting corrosion rate of carbon steel pipeline used oil and gas transmission in Niger Delta using artificial neutral network

# Methodology

The study involves application of neural network method in fitting a mathematical function relating corrosion rate with all the factors affecting corrosion of carbon steel pipeline used for oil and gas transportation in Niger Delta and using it for parametric evaluation of the factors in order to determine the significance/nature of their effect in this process. Factors investigated includes pipe age (Ayrs), diameter (D mm) and length (L mm), temperature ( $T^0$ C), CO<sub>2</sub> partial pressure (P<sub>CO2</sub>bar), flow velocity of the fluid (V m/s) and sand (SF m/s), fluid pressure (P bar), density ( $\rho \text{ kg/m}^3$ ) and viscosity ( $\mu$  cP), environmental pH (pH) and chloride content (Cl mg/kg).

Operational/process data (Table 1 and 2) of sixty pipelines with insignificant data outliers were selected for this investigation. The pipes were used by six oil and gas companies between 2000 and 2010 at different oil and gas fields at Akwa-Ibom, Balvelsa, Cross River, Edo, Delta, and Rivers states of Nigeria. The ANN function/simulation was developed and analyzed using MATLAB2014b from a neural network architecture design (Fig. 1) which uses feed forward and back propagation training algorithms (Fig. 2) for generating and comparing predictions with given/target actual corrosion rates by backtracking and adjusting the weights until the highest possible correlation is obtained. Thereafter, the prediction adequacy/capability developed of the simulation was confirmed by comparing it with the predictions of the conventional simulation used by most oil and gas companies in Niger Delta of Nigeria and measured corrosion rate of the pipe sampled before its parametric analysis using Analysis of variance and contour/surface plots.

Table 1: Process data used for developingthe ANN model of oil and gas pipelinecorrosionrate

| PIPELINE | PIPE | DIAMETER<br>(mm) | PIPE   | FLUID | PRESSURE<br>(bar) | VELOCITY<br>(m/s) | CO <sub>2</sub> PARTIAL<br>PRESSURE(bar) | PH    | CHLORIDE<br>(mg/Kg) | SAND<br>FLOW | OIL<br>DENSITY | OIL<br>VISCOSITY |
|----------|------|------------------|--------|-------|-------------------|-------------------|------------------------------------------|-------|---------------------|--------------|----------------|------------------|
| 9        | 211  | 204.9            | (year) | 44    | 55                | 3.7               | 4.5                                      | E.E.  | 24.6                | 1 673        | 992 60         | 24.91            |
| -        | 45   | 509.5            | 37     | 67    | 20                | 1.7               | 3.5                                      | 3.0   | 34.0                | 1.075        | 010 00         | 10.72            |
| 2        | 121  | 500 6            | 10     | 60    | 53                | 1.02              | 2.3                                      | 3.5   | 36.5                | 0.09         | 917.54         | 10.75            |
| -        | 200  | 400              | 15     | 25    | 54                | 1.02              | 5.0                                      | 5.3   | 33.9                | 0.98         | 817.34         | 27.19            |
| 5        | 300  | 610              | 20     | 35    | 36                | 1.01              | 4.6                                      | 5.3   | 36.1                | 0.52         | 916.99         | 0.65             |
| 6        | 500  | 600              | 23     | 60    | 63.0              | 0.03              | E 4                                      | 3.4   | 36.1                | 0.38         | 017.50         | 10.02            |
| 2        | 500  | 600              | 32     | 55    | 70                | 0.92              | 2.4                                      | 5.6   | 33.3                | 0.43         | 825.08         | 16.38            |
|          | 500  | 102.7            | 23     | 35    | 20                | 3.85              | 2.2                                      | 5.9   | 22.0                | 1.93         | 828.07         | 26.05            |
| 9        | 343  | 406.4            | 36     | 67    | 55                | 1.95              | 5.9                                      | 3.4   | 37.5                | 0.09         | 210 74         | 10.70            |
| 10       | 110  | 914              | 20     | 45.5  | 50                | 1.65              | 4.0                                      | 5.1   | 24.9                | 0.57         | 921 60         | 22.26            |
| 11       | 55   | 205              | 40     | 70    | 60                | 2.71              | 53                                       | 5.4   | 35.2                | 2.01         | 216.09         | 9 70             |
| 12       | 100  | 509              | 30     | 49    | 64                | 1.56              | 25                                       | 4.2   | 26.0                | 1.02         | 920 10         | 21.17            |
| 12       | 1000 | 225              | 12     | 55    | 40                | 2.2               | 20                                       | 5.24  | 33.9                | 1.02         | 975.95         | 16 17            |
| 14       | 45   | 509              | 41     | 67    | 30                | 1.95              | 2.0                                      | 5.96  | 27.0                | 1.04         | 919 63         | 10.62            |
| 15       | 60   | 609              | 15     | 52    | 45                | 1.09              | 29                                       | 5 3.4 | 34.3                | 0.69         | 827.08         | 17.47            |
| 16       | 500  | 192.7            | 11     | 45    | 37                | 2.92              | 22                                       | 5.23  | 31.7                | 1.56         | 821 01         | 22.71            |
| 17       | 121  | 500.5            | 6      | 70    | 67                | 0.76              | 26                                       | 3.6   | 39.7                | 0.41         | 817.01         | 0.71             |
| 19       | 211  | 304.9            | 31     | 45    | 45                | 2.62              | 5.4                                      | 5.7   | 34.5                | 1.78         | 821 04         | 22.76            |
| 19       | 210  | 304.8            | 27     | 66.5  | 69                | 1.75              | 43                                       | 5.45  | 34.7                | 1.08         | 819.00         | 10.91            |
| 20       | 250  | 406.4            | 8      | 63    | 49.5              | 2.85              | 34                                       | 5.67  | 30.1                | 1.12         | 821.09         | 12.22            |
| 21       | 600  | 610              | 19     | 56    | 55                | 1.04              | 3.2                                      | 65    | 35.6                | 0.62         | 825.31         | 15.64            |
| 22       | 400  | 600              | 14     | 69    | 60                | 1.68              | 49                                       | 5 34  | 35.9                | 1.02         | 817 57         | 10.02            |
| 23       | 145  | 609.4            | 16     | 67    | 67                | 2.32              | 51                                       | 5.6   | 36.8                | 1.02         | 818 79         | 10.72            |
| 24       | 145  | 406.4            | 22     | 70    | 65                | 2.85              | 2                                        | 5 23  | 37.9                | 1.78         | 817.01         | 9.71             |
| 25       | 60   | 406.4            | 27     | 46    | 53                | 1.9               | 2.5                                      | 5.12  | 34.9                | 1.4          | 831.36         | 22.86            |
| 26       | 121  | 609.6            | 36     | 68    | 70                | 1.28              | 3.4                                      | 5.24  | 33.6                | 1.95         | 818.21         | 10.38            |
| 27       | 215  | 304.8            | 10     | 70    | 54                | 2.95              | 2.31                                     | 6.2   | 36.9                | 1.35         | 816.96         | 9.69             |
| 28       | 215  | 304.8            | 12     | 56    | 46                | 1.82              | 2.6                                      | 3.5   | 33.3                | 1.56         | 825.27         | 15.61            |
| 29       | 60   | 508              | 40     | 55    | 60                | 1.92              | 2                                        | 5.34  |                     | 1.08         | 825.93         | 16.24            |
| 30       | 1000 | 225              | 11     | 70    | 43                | 3.28              | 5.48                                     | 3.54  | 38.9                | 1.98         | 816.91         | 9.66             |
| 31       | 45   | 508              | 39     | 69    | 54                | 2.24              | 5.2                                      | 4.1   | 36.8                | 1.22         | 817.5          | 10.0             |
| 32       | 45   | 508              | 40     | 30    | 56                | 3.5               | 4.2                                      | 3.5   | 37.7                | 1.07         | 841.3          | 48.3             |
| 33       | 100  | 508              | 23     | 34    | 70                | 1.92              | 3.5                                      | 6.45  | 31.6                | 1.23         | 838.8          | 39.1             |
| 34       | 100  | 508              | 26     | 28    | 43                | 3.38              | 6                                        | 3.4   | 34.9                | 1.93         | 842.4          | 54.3             |
| 35       | 500  | 192.7            | 9      | 70    | 59                | 3.4               | 5.1                                      | 4.43  | 38.5                | 1.91         | 817.0          | 9.7              |
| 36       | 242  | 406.4            | 21     | 45    | 68                | 2.8               | 2.5                                      | 5.5   | 35.12               | 1.77         | 832.0          | 23.9             |
| 37       | 242  | 406.4            | 24     | 43    | 67                | 2.58              | 3.4                                      | 5.65  | 32.76               | 1.45         | 833.3          | 25.9             |
| 38       | 242  | 406.4            | 26     | 38    | 69.5              | 2.34              | 3.7                                      | 5.64  | 33.6                | 1.24         | 836.3          | 32.3             |
| 39       | 242  | 406.4            | 28     | 46    | 49                | 1.84              | 6                                        | 4.34  | 32.9                | 1.05         | 831.3          | 22.8             |
| 40       | 300  | 400              | 11     | 69    | 53                | 1.96              | 5.3                                      | 5.34  | 34.8                | 0.98         | 817.5          | 10.0             |

| Table 2. Dragons dat | a used for conf | Sumina tha ANI | Imadal of oil  | and and n | incline comparion |
|----------------------|-----------------|----------------|----------------|-----------|-------------------|
| Table 2: Process dat | a used for conf | lirming the AM | N model of off | ano gas p | openne corrosion  |
|                      |                 |                |                |           | 1                 |

rate

|               |                        |                  |                    |                    |                   | 141               | C                                        |      |                     |                       |                |                  |
|---------------|------------------------|------------------|--------------------|--------------------|-------------------|-------------------|------------------------------------------|------|---------------------|-----------------------|----------------|------------------|
| PIPE-<br>Line | PIPE<br>LENGTH<br>(mm) | DIAMETER<br>(mm) | PIPE AGE<br>(year) | FLUID<br>TEMP (°C) | PRESSURE<br>(bar) | VELOCITY<br>(m/s) | CO <sub>2</sub> PARTIAL<br>PRESSURE(bar) | рн   | CHLORIDE<br>(mg/Kg) | SAND<br>FLOW<br>(m/s) | oil<br>Density | oil<br>Viscosity |
| 41            | 300                    | 400              | 13                 | 67                 | 54                | 2.48              | 2.4                                      | 6.33 | 35.5                | 1.99                  | 832.03         | 1.07             |
| 42            | 300                    | 400              | 15                 | 70                 | 56                | 2.08              | 3.2                                      | 6.43 | 33.8                | 1.43                  | 833.06         | 1.07             |
| 43            | 300                    | 400              | 17                 | 45                 | 48                | 2.02              | 2.3                                      | 6.5  | 32.9                | 1.78                  | 793 35         | 0.83             |
| 44            | 300                    | 400              | 19                 | 65                 | 47                | 3.02              | 2.56                                     | 5.34 | 34.2                | 1.98                  | 846.21         | 1.06             |
| 45            | 600                    | 610              | 23                 | 46                 | 58                | 1.8               | 3.7                                      | 5.31 | 36.4                | 1.41                  | 778.94         | 0.84             |
| 46            | 600                    | 610              | 25                 | 45                 | 70                | 1.24              | 5.1                                      | 5.11 | 36.43               | 0.76                  | 763.71         | 0.81             |
| 47            | 600                    | 610              | 27                 | 54                 | 64                | 2.14              | 2.6                                      | 6.5  | 32.12               | 1.32                  | 789 10         | 1.00             |
| 48            | 600                    | 610              | 29                 | 45                 | 67                | 1.28              | 2.55                                     | 5.34 | 33.76               | 0.84                  | 766 32         | 0.80             |
| 49            | 600                    | 610              | 31                 | 57                 | 69                | 1.98              | 3.2                                      | 5.74 | 34.6                | 1.05                  | 788.81         | 1.05             |
| 50            | 45                     | 508              | 11                 | 67                 | 70                | 1.52              | 3.21                                     | 5.34 | 35.3                | 1.04                  | 804.45         | 1 12             |
| 51            | 45                     | 355              | 12                 | 56                 | 35                | 2.54              | 3.56                                     | 5.4  | 36.8                | 1.91                  | 869.79         | 1 10             |
| 52            | 55                     | 508              | 11                 | 70                 | 57.4              | 2.16              | 5.67                                     | 5.2  | 31.2                | 1.75                  | 820.00         | 1.10             |
| 53            | 55                     | 711              | 8                  | 68                 | 67.5              | 0.98              | 5.78                                     | 5.19 | 36.2                | 0.45                  | 809.41         | 1.07             |
| 54            | 211                    | 650              | 7                  | 58                 | 54                | 2.24              | 4.2                                      | 5.64 | 34.6                | 1.54                  | 912.92         | 1.05             |
| 55            | 211                    | 200              | 14                 | 67                 | 51                | 3.42              | 2.4                                      | 5.71 | 35.5                | 1.43                  | 929.27         | 1.05             |
| 56            | 211                    | 400              | 17                 | 69                 | 49                | 2.55              | 2.6                                      | 5.7  | 34.12               | 1.39                  | 049.60         | 1.00             |
| 57            | 45                     | 400              | 8                  | 70                 | 65                | 2.36              | 5.76                                     | 3.9  | 35.9                | 1.01                  | 016 22         | 1.04             |
| 58            | 60                     | 350              | 6                  | 65                 | 65                | 2.46              | 2.12                                     | 5.3  | 37.6                | 1.55                  | 000.14         | 1.10             |
| 59            | 60                     | 700              | 12                 | 67                 | 68                | 0.93              | 2.6                                      | 5.23 | 34.7                | 0.47                  | 000.14         | 1.10             |
| 60            | 100                    | 600              | 7                  | 45                 | 70                | 1.18              | 5.67                                     | 5.2  | 33.9                | 0.59                  | 763.71         | 0.81             |



Fig 1: Artificial neural network design for oil and gas pipeline corrosion rate analysis



Fig. 2: Flow chart for training the neural network of oil and gas pipeline corrosion rat

### **Results and Discussion**

The user-interfacing window of the developed ANN function (Eqn. 1) computer simulation is shown in Fig. 3. This simulation computes and plots corrosion rate (mm/year) as well as and severity levels of the influence of each parameters on the corrosion rate of oil and gas pipeline. Analysis of this model revealed over 99% prediction accuracy (prediction error range of -0.041 to 0.011%). Also its predictions and the corresponding actual corrosion rates are greater than those of conventional simulation used by most oil and gas

companies in Nigeria (Fig. 4). This is anticipated because the conventional simulation used by most companies at present did not account for all the relevant factors affecting oil and gas pipeline corrosion in this region and Analysis of variance of the model coefficients(Table 3) revealed that all the factors investigated contribute significantly to oil and gas pipeline corrosion process. Hence, the perpetual waste of products and environmental degradation as well as accident/loss life due to incessant unexpected oil and gas pipeline failure in this country.

```
\log(CR) = \beta_{11} \Big( K_{1,1} \log L + K_{1,2} \log D + K_{1,3} \log A + K_{1,4} \log T + K_{1,5} \log P + K_{1,6} \log V + K_{1,7} \log P_{CO2} + K_{1,8} \log p H + K_{1,9} \log Cl + K_{1,10} \log SF + K_{1,11} \log \rho + K_{1,12} \log \mu + \alpha_1 \Big) + \beta_{12} \Big( K_{2,1} \log L + K_{2,2} \log D + K_{2,3} \log A + K_{2,4} \log T + K_{2,5} \log P + K_{2,6} \log V + K_{2,7} \log P_{CO2} + K_{2,8} \log p H + K_{2,9} \log Cl + K_{2,10} \log SF + K_{2,11} \log \rho + K_{2,12} \log \mu + \alpha_2 \Big) + M (1)
```

Where  $K, \alpha, \beta$  and M are constants constituting exponential, transformation,

correlation factor, and error correction coefficients respectively.







Fig. 4: Comparative analysis of improved simulation for pipeline corrosion rate

| Parameter                              |                                           | Sum of<br>Squares                         | DF             | Mean<br>Square         | F     | Sig. |
|----------------------------------------|-------------------------------------------|-------------------------------------------|----------------|------------------------|-------|------|
| Pipe Length (m)                        | Between Groups                            | 2970202.743                               | 68             | 43679.452              | 1 231 | .265 |
| Pipe Diameter (mm)                     | Within Groups<br>Total<br>Between Groups  | 1099920.217<br>4070122.960<br>1674468.863 | 31<br>99<br>68 | 35481.297<br>24624 542 | 1 146 | 345  |
| Dine Are (vert)                        | Within Groups<br>Total                    | 666309.718<br>2340778.581<br>7306.357     | 31<br>99       | 21493.862              | 1.650 | 0.51 |
| nge (jew)                              | Within Groups<br>Total                    | 2006.633<br>9312.990                      | 31<br>99       | 64.730                 | 1.000 |      |
| Temperature (-C)                       | Within Groups<br>Total                    | 5018.297<br>15470.272                     | 31             | 161.881                | 949   | .382 |
| Fluid Pressure (bar)                   | Between Groups                            | 7626.348                                  | 68             | 112.152                | 1.077 | .420 |
| Ehvid Valocity (m/s)                   | Within Groups<br>Total<br>Petrosen Groups | 3228.220<br>10854.568<br>40.779           | 31 99          | 104.136                | 1 357 | 176  |
| Fille Velocity (III-5)                 | Within Groups<br>Total                    | 13.705                                    | 31             | .442                   | 1.337 |      |
| CO <sub>2</sub> Partial Pressure (bar) | Between Groups                            | 102.804                                   | 68             | 1.512                  | 639   | .937 |
| nH of Pipe Environment                 | Within Groups<br>Total<br>Between Groups  | 73.316<br>176.120<br>54.344               | 31<br>99<br>68 | 2.365                  | 1.625 | 069  |
|                                        | Within Groups<br>Total                    | 15.245                                    | 31<br>99       | .492                   |       |      |
| Chloride Content (mg/kg)               | Between Groups<br>Within Groups           | 267.840                                   | 68             | 3.939                  | 1.739 | .046 |
| Sand Flow (m/s)                        | Total<br>Between Groups                   | 338.044<br>16.880                         | 99<br>68       | .248                   | 1.554 | .089 |
|                                        | Within Groups<br>Total                    | 4.953<br>21.833                           | 31<br>99       | .160                   |       |      |
| Density (Kg/m²)                        | Between Groups                            | 1746865.386                               | 68             | 2283                   | 1.665 | .068 |
|                                        | Within Groups<br>Total                    | 5666309.187                               | 31<br>99       | .675                   |       |      |
| Viscosity (gg)                         | Between Groups<br>Within Groups<br>Total  | 11273692.357<br>1088820.216               | 68<br>31<br>99 | 122.3<br>.741          | 1.498 | 079  |

| Table 3: | Analysis of | Variance of   | ' the develo | ned ANN  | model | narameters |
|----------|-------------|---------------|--------------|----------|-------|------------|
| Lanc J.  | Analysis of | v al lance of | the acvero   | pcu AINI | mouci | parameters |

This work also revealed that the rate of corrosion of steel pipes used for oil and gas transmission varies with temperature, flow pressure,  $CO_2$  partial pressure, pipe length

and pH value in a linear and uniform trend while the effects of the pipe age, flow velocity, density, viscosity and chloride are non-linear. In addition, the interaction of

FUPRE Journal of Scientific and Industrial Research Vol.1, (1), 2017.

sand flow and pipe diameter with other factors facilities localized corrosion which causes unexpected failure of oil and gas transmission pipeline than uniform corrosion. The corrosion rate of steel pipes used for oil and gas transmission fairly increase with temperature, flow pressure and CO<sub>2</sub> partial pressure in a uniform trend while density and viscosity of the fluid transmitted reciprocates the effect of temperature reduction as expected. This is because temperature results to contraction (decrease in volume) of the fluid transported which in turn increases its density and viscosity since the speed of the fluid particles reduces as its layers get closer. The rate of corrosion in oil and gas pipeline increased gradually increased gradually to 0.035 mm/yr till flow

velocity reached 0.7m/s and remains relatively constant to a velocity of 3m/s before accelerating to average of 0.24 mm/yr. Furthermore, the corrosion rate is partially constant up to chloride value of 31 and slowly increased from 0.03 mm/yr to 0.05mm/yr at 33 before accelerating to an average of 0.17mm/year thereafter. Moreover, corrosion rate of oil and gas transmission pipeline decreases with its length and environmental pH value because oxygen is distributed through the entire length of pipe, thereby reducing its effect on any region as length increases while increase pH value of the environment toward neutrality decreases ionic/acidic of concentration and consequently corrosion and other chemical processes.





Fig. 5: Parametric effects of the factors on oil and gas pipeline corrosion rate

## Conclusion

This study confirmed pipe age, diameter and length, temperature, carbon dioxide (CO<sub>2</sub>) partial pressure, flow velocity of the fluid and sand, fluid pressure, density and viscosity, chloride contents and pH value of its environment as the relevant parameters affecting corrosion of oil and gas pipeline in

Niger Delta region of Nigeria. Therefore, the inadequate prediction of oil and gas pipeline corrosion rate and the associated incessant unexpected pipeline failure in Nigerian is because the simulation used by most oil and gas companies in this country for prediction and management of corrosion did not account for some of these factors. The use of ANN model developed in this study is therefore recommended eliminate to perpetual waste of products and environmental degradation as well as accident/loss life associated with oil and gas pipeline in this sector

## References

Akano, T. T., Fakinlede, O. A., Mgbemere,H. E. and Amechi, J. C. (2017). ANeuro Fuzzy Model for theInvestigation of Deterioration ofMetallic Pipe Conveying Fluid UnderDifferent Pipe Burial Depth, Soil

Types and Properties. *Nigerian Journal of Technology*, 36(1): 72-79.

- Bassam, A., Toledo, D. O. and Hernandez, J. A. (2009). Artificial Neural Network for the Evaluation of CO<sub>2</sub> Corrosion in a Pipeline steel. *Journal of Solid State Electrochemist.* 13(5): 773-780.
- DeWaard, C. and Lotz, U. (1995). Influence of Liquid Flow Velocity on Corrosion a Semi-Empirical Model, NACE *International Corrosion Conference*, Paper No 128, Orlando, FL.
- DeWaard, C. and Millians, D.E. (1975) Carbonic Acid Corrosion of Steel. *Corrosion*, 31(5): 177-.181.
- Din, M. M., Norafida, I., Azalan Md. Z., Norhazilan, Md. N., Maheyzah, Md. S and Rosilawati Md. Rasol (2015). An Artificial Neural Network Modeling for Pipeline Corrosion Growth Prediction. ARPN Journal of Engineering and Applied Sciences, 10(2): 512-519.
- Gatekeeper (2014). Corrosion Modeling: Influencing Factors. A Technical Newsletter for the Oil and Gas

FUPRE Journal of Scientific and Industrial Research Vol.1, (1), 2017.

Industries.<u>www.gateinc.com</u>. Accessed on 15/03/2016.

- Giulia D. M., Roberta, V., Manuela, G. and
  Giovanna, G. (2014). A Neural
  Network Predictive Model of Pipeline
  Internal Corrosion Profile.
  International Conference on Systems
  Information Modeling and Simulation.
  18-23.
- IIman, M. N. and Kusmono (2014). Analysis of Internal Corrosion in Subsea oil Pipeline: Case Studies Engineering Failure Analysis Elsevier, 2 (1): 1-8.
- Iyasele, E. O. and Ntunde, D. I. (2016). Algorithm for Determining the Corrosion Rate of Oil Pipelines using Modified Norsork M-506 Model: A Case Study. Umudike Journal of Engineering and Technology (UJET), 2(2): 170-181.

Kexi L., Quanke Y., Xia W. and Wenlong J. (2012). A Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion. Energies, 5(2): 3892-3907

Mohammed S.E., AhmedS., TarekZ., FaridM. andLayaP. (2014). Artificial neural network models for predicting condition of offshore oil and gas pipelines. Automation in Construction. V 45:50-65

Netto, T. A. U. S., Ferraz, S. F. and Estefen (2005). The Effect of Corrosion defects on the Burst Pressure of Pipelines. *Journal of Constructional Steel Research*, 61(1): 1185-1204.

- Norsok, S. (2005). Norsok standard M 506: CO<sub>2</sub> Corrosion Prediction Model. Standards Strandveien N-1326 Lysaker Norway, 1-28.
- Ossai, C. (2012). Predictive Modeling of Wellhead Corrosion Due to Operating Conditions: A Field Data Approach. *International Scholarly Research Network, ISRN Corrosion*, 2012(1):.1-8.

Woldeyohannes, A. D. and Majid, M. A. (2011). Effect of Age of Pipes on Performance of Natural Gas Transmission Pipeline Network System. Journal of Applied Science 11(9): 1612-1617.